Consider the expression [tex]8y + y + y + 10[/tex]. Choose ALL equivalent expressions.

A. [tex]y + 1[/tex]

B. [tex]10y + 1[/tex]

C. [tex]10y + 10[/tex]

D. [tex]10(y + 1)[/tex]

E. [tex]10(y + 10)[/tex]



Answer :

Let's simplify the given expression [tex]\(8y + y + y + 10\)[/tex]:

1. Combine like terms:
- [tex]\(8y + y + y\)[/tex] are terms with [tex]\(y\)[/tex].
- Combine them: [tex]\(8y + y + y = 10y\)[/tex].

2. So, the expression simplifies to:
[tex]\[ 10y + 10 \][/tex]

Now we need to check which of the given choices are equivalent to [tex]\(10y + 10\)[/tex]:

- Option A: [tex]\(y + 1\)[/tex]:
[tex]\[ y + 1 \text{ is not equivalent to } 10y + 10. \][/tex]

- Option B: [tex]\(10y + 1\)[/tex]:
[tex]\[ 10y + 1 \text{ is not equivalent to } 10y + 10. \][/tex]

- Option C: [tex]\(10y + 10\)[/tex]:
[tex]\[ 10y + 10 \text{ is exactly } 10y + 10. \text{ (Equivalent) } \][/tex]

- Option D: [tex]\(10(y + 1)\)[/tex]:
[tex]\[ \text{Expand } 10(y + 1): 10 \cdot y + 10 \cdot 1 = 10y + 10. \text{ (Equivalent) } \][/tex]

- Option E: [tex]\(10(y + 10)\)[/tex]:
[tex]\[ \text{Expand } 10(y + 10): 10 \cdot y + 10 \cdot 10 = 10y + 100. \text{ (Not equivalent) } \][/tex]

Therefore, the expressions equivalent to [tex]\(8y + y + y + 10\)[/tex] are:

Option C: [tex]\(10y + 10\)[/tex]

Option D: [tex]\(10(y + 1)\)[/tex]

So, the correct answer is choices [tex]\(C\)[/tex] and [tex]\(D\)[/tex] respectively.