Calculate how much more a household with a credit score of 525 will pay compared to a household with a credit score of 675.

A. [tex]$\$[/tex] 4,391[tex]$
B. $[/tex]\[tex]$ 1,337$[/tex]
C. [tex]$\$[/tex] 2,604[tex]$
D. $[/tex]\[tex]$ 3,491$[/tex]

\begin{tabular}{|l|l|l|l|}
\hline FICO Score & Simple Interest Rate & Total \# of Payments & Total Amount Paid \\
\hline [tex]$800-850$[/tex] & [tex]$12 \%$[/tex] & 29 & [tex]$\$[/tex] 9,256.00[tex]$ \\
\hline $[/tex]740-799[tex]$ & $[/tex]15 \%[tex]$ & 33 & $[/tex]\[tex]$ 9,812.00$[/tex] \\
\hline [tex]$670-739$[/tex] & [tex]$18 \%$[/tex] & 38 & [tex]$\$[/tex] 10,554.00[tex]$ \\
\hline $[/tex]580-669[tex]$ & $[/tex]21 \%[tex]$ & 48 & $[/tex]\[tex]$ 11,891.00$[/tex] \\
\hline [tex]$300-579$[/tex] & [tex]$28 \%$[/tex] & 60 & [tex]$\$[/tex] 14,945.00$ \\
\hline
\end{tabular}



Answer :

Certainly! Let's go through the steps to solve the problem.

1. Identify the relevant data from the table:
- For a household with a credit score of 525 (which falls under the range 300-579):
- The total amount paid: \[tex]$14,945.00 - For a household with a credit score of 675 (which falls under the range 670-739): - The total amount paid: \$[/tex]10,554.00

2. Calculate the difference between the total amounts paid by the two households:
- We subtract the total amount paid by the household with a credit score of 675 from the total amount paid by the household with a credit score of 525.

[tex]\[ \text{Difference} = \text{\$14,945.00} - \text{\$10,554.00} \][/tex]

3. Perform the subtraction:
[tex]\[ \text{Difference} = 14,945.00 - 10,554.00 = 4,391 \][/tex]

4. Conclusion:
- The household with a credit score of 525 will pay [tex]\( \$4,391 \)[/tex] more compared to the household with a credit score of 675.

Thus, the correct answer is:

[tex]\[ \boxed{\$4,391} \][/tex]