Answer :
To determine the corresponding [tex]\( p \)[/tex]-value for the given [tex]\( z \)[/tex]-score of [tex]\(-1.16\)[/tex], we will use the provided z-table. Here's a step-by-step guide:
1. Identify the [tex]\( z \)[/tex]-score of interest:
The [tex]\( z \)[/tex]-score provided is [tex]\(-1.16\)[/tex].
2. Locate the row corresponding to the integer and first decimal place of the [tex]\( z \)[/tex]-score:
For [tex]\(-1.16\)[/tex], the integer and first decimal place are [tex]\(-1.1\)[/tex]. Locate the row for [tex]\(-1.1\)[/tex].
3. Locate the column corresponding to the hundredth decimal place of the [tex]\( z \)[/tex]-score:
For [tex]\(-1.16\)[/tex], the second decimal place is [tex]\(0.06\)[/tex]. Locate the column for [tex]\(0.06\)[/tex].
4. Find the intersection of the row and column:
Find where the row for [tex]\(-1.1\)[/tex] and the column for [tex]\(0.06\)[/tex] intersect in the table.
Based on the provided table, the intersection of the row [tex]\(-1.1\)[/tex] and column [tex]\(0.06\)[/tex] gives the following value:
[tex]\[ p = 0.123 \][/tex]
Thus, the corresponding [tex]\( p \)[/tex]-value for the [tex]\( z \)[/tex]-score of [tex]\(-1.16\)[/tex] is 0.123.
1. Identify the [tex]\( z \)[/tex]-score of interest:
The [tex]\( z \)[/tex]-score provided is [tex]\(-1.16\)[/tex].
2. Locate the row corresponding to the integer and first decimal place of the [tex]\( z \)[/tex]-score:
For [tex]\(-1.16\)[/tex], the integer and first decimal place are [tex]\(-1.1\)[/tex]. Locate the row for [tex]\(-1.1\)[/tex].
3. Locate the column corresponding to the hundredth decimal place of the [tex]\( z \)[/tex]-score:
For [tex]\(-1.16\)[/tex], the second decimal place is [tex]\(0.06\)[/tex]. Locate the column for [tex]\(0.06\)[/tex].
4. Find the intersection of the row and column:
Find where the row for [tex]\(-1.1\)[/tex] and the column for [tex]\(0.06\)[/tex] intersect in the table.
Based on the provided table, the intersection of the row [tex]\(-1.1\)[/tex] and column [tex]\(0.06\)[/tex] gives the following value:
[tex]\[ p = 0.123 \][/tex]
Thus, the corresponding [tex]\( p \)[/tex]-value for the [tex]\( z \)[/tex]-score of [tex]\(-1.16\)[/tex] is 0.123.