Consider directed line segment [tex]PQ[/tex]. Point [tex]P[/tex] is located at [tex](-10,3)[/tex]. Point [tex]R[/tex], which is on segment [tex]PQ[/tex] and divides segment [tex]PQ[/tex] into a ratio of [tex]PR: RQ = 2:3[/tex], is located at [tex](4,7)[/tex].

What are the coordinates of point [tex]Q[/tex]?

A. [tex]\left(-\frac{22}{5}, \frac{23}{5}\right)[/tex]
B. [tex](-5,13)[/tex]
C. [tex](25,13)[/tex]
D. [tex](25,22)[/tex]



Answer :

Let's solve the problem step-by-step to find the coordinates of point Q.

1. Identify Given Data:
- Coordinates of Point [tex]\(P\)[/tex]: [tex]\(P(-10, 3)\)[/tex]
- Coordinates of Point [tex]\(R\)[/tex]: [tex]\(R(4, 7)\)[/tex]
- Ratio [tex]\(PR: RQ = 2:3\)[/tex]

2. Section Formula:
The section formula helps us find the coordinates of a point dividing a segment in a given ratio. If a point [tex]\(R(x, y)\)[/tex] divides a line segment joining two points [tex]\(P(x_1, y_1)\)[/tex] and [tex]\(Q(x_2, y_2)\)[/tex] in the ratio [tex]\(m:n\)[/tex], the coordinates [tex]\((x, y)\)[/tex] of [tex]\(R\)[/tex] are given by:

[tex]\[ R = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right) \][/tex]

Here, [tex]\(x_1 = -10\)[/tex], [tex]\(y_1 = 3\)[/tex], [tex]\(x_2 = x\)[/tex] (coordinates of [tex]\(Q\)[/tex]), [tex]\(y_2 = y\)[/tex] (coordinates of [tex]\(Q\)[/tex]), [tex]\(m = 2\)[/tex], [tex]\(n = 3\)[/tex], and [tex]\(R = (4, 7)\)[/tex].

3. Setup Equations:
Using the section formula, write two separate equations for [tex]\(x\)[/tex]-coordinate and [tex]\(y\)[/tex]-coordinate using point [tex]\(R\)[/tex]'s known coordinates.

For the [tex]\(x\)[/tex]-coordinate:
[tex]\[ 4 = \frac{2x + 3(-10)}{2 + 3} \][/tex]

For the [tex]\(y\)[/tex]-coordinate:
[tex]\[ 7 = \frac{2y + 3(3)}{2 + 3} \][/tex]

4. Solve the [tex]\(x\)[/tex]-coordinate Equation:
[tex]\[ 4 = \frac{2x - 30}{5} \][/tex]

Multiply both sides by 5:
[tex]\[ 20 = 2x - 30 \][/tex]

Add 30 to both sides:
[tex]\[ 50 = 2x \][/tex]

Divide both sides by 2:
[tex]\[ x = 25 \][/tex]

5. Solve the [tex]\(y\)[/tex]-coordinate Equation:
[tex]\[ 7 = \frac{2y + 9}{5} \][/tex]

Multiply both sides by 5:
[tex]\[ 35 = 2y + 9 \][/tex]

Subtract 9 from both sides:
[tex]\[ 26 = 2y \][/tex]

Divide both sides by 2:
[tex]\[ y = 13 \][/tex]

6. Conclusion:
The coordinates of point [tex]\(Q\)[/tex] are [tex]\((25, 13)\)[/tex].

Thus, the answer is:
[tex]\[ \boxed{(25, 13)} \][/tex]