Sure, let's simplify the given expression step-by-step:
Given expression:
[tex]\[ -8 + 4(c - 9) - 5 + 6c + 2c \][/tex]
1. Distribute the 4 across the parenthesis [tex]\(4(c - 9)\)[/tex]:
[tex]\[ -8 + 4c - 36 - 5 + 6c + 2c \][/tex]
2. Combine the constant terms:
[tex]\[ -8 - 36 - 5 \][/tex]
Adding these values:
[tex]\[ -8 - 36 = -44 \][/tex]
[tex]\[ -44 - 5 = -49 \][/tex]
3. Combine the 'c' terms:
[tex]\[ 4c + 6c + 2c \][/tex]
Adding these coefficients:
[tex]\[ 4 + 6 = 10 \][/tex]
[tex]\[ 10 + 2 = 12 \][/tex]
So, we have [tex]\(12c\)[/tex].
4. Rewrite the expression by combining the constants and 'c' terms:
[tex]\[ 12c - 49 \][/tex]
Thus, the simplified expression is:
[tex]\[ 12c - 49 \][/tex]
So, the final simplified form of the expression [tex]\( -8 + 4(c - 9) - 5 + 6c + 2c \)[/tex] is:
[tex]\[ 12c - 49 \][/tex]