Select the correct answer.

Which expression is equivalent to the polynomial [tex]x^2 + 12[/tex]?

A. [tex](x + 2\sqrt{3}i)(x - 2\sqrt{3}i)[/tex]
B. [tex](x + 6i)(x - 6i)[/tex]
C. [tex](x + 2\sqrt{5})^2[/tex]
D. [tex](x + 2\sqrt{3})(x - 2\sqrt{3})[/tex]



Answer :

To determine which expression is equivalent to the polynomial [tex]\( x^2 + 12 \)[/tex], let's expand each option and compare it to [tex]\( x^2 + 12 \)[/tex].

### Option A: [tex]\((x + 2\sqrt{3}i)(x - 2\sqrt{3}i)\)[/tex]

To expand this expression, we use the difference of squares formula:

[tex]\[ (x + 2\sqrt{3}i)(x - 2\sqrt{3}i) = x^2 - (2\sqrt{3}i)^2 \][/tex]

Next, calculate [tex]\((2\sqrt{3}i)^2\)[/tex]:

[tex]\[ (2\sqrt{3}i)^2 = 4 \cdot 3 \cdot i^2 = 12 \cdot (-1) = -12 \][/tex]

Thus:

[tex]\[ x^2 - (-12) = x^2 + 12 \][/tex]

This matches the given polynomial [tex]\( x^2 + 12 \)[/tex].

### Option B: [tex]\((x + 6i)(x - 6i)\)[/tex]

Using the same difference of squares formula:

[tex]\[ (x + 6i)(x - 6i) = x^2 - (6i)^2 \][/tex]

Calculate [tex]\((6i)^2\)[/tex]:

[tex]\[ (6i)^2 = 36i^2 = 36 \cdot (-1) = -36 \][/tex]

Thus:

[tex]\[ x^2 - (-36) = x^2 + 36 \][/tex]

This does not match the given polynomial [tex]\( x^2 + 12 \)[/tex].

### Option C: [tex]\((x + 2\sqrt{5})^2\)[/tex]

Expand this by squaring the binomial:

[tex]\[ (x + 2\sqrt{5})^2 = x^2 + 2 \cdot 2\sqrt{5} \cdot x + (2\sqrt{5})^2 \][/tex]

Calculate:

[tex]\[ (2\sqrt{5})^2 = 4 \cdot 5 = 20 \][/tex]

Thus:

[tex]\[ x^2 + 4\sqrt{5}x + 20 \][/tex]

This does not match the given polynomial [tex]\( x^2 + 12 \)[/tex].

### Option D: [tex]\((x + 2\sqrt{3})(x - 2\sqrt{3})\)[/tex]

Again, using the difference of squares formula:

[tex]\[ (x + 2\sqrt{3})(x - 2\sqrt{3}) = x^2 - (2\sqrt{3})^2 \][/tex]

Calculate [tex]\((2\sqrt{3})^2\)[/tex]:

[tex]\[ (2\sqrt{3})^2 = 4 \cdot 3 = 12 \][/tex]

Thus:

[tex]\[ x^2 - 12 \][/tex]

This does not match the given polynomial [tex]\( x^2 + 12 \)[/tex].

### Conclusion

After expanding all the options and comparing them with [tex]\( x^2 + 12 \)[/tex], we find that the correct answer is:

[tex]\[ \boxed{(x + 2\sqrt{3}i)(x - 2\sqrt{3}i)} \][/tex]

So, the correct option is A.