What is [tex]$-36^{\circ}$[/tex] converted to radians?

A. [tex]-5 \pi[/tex]

B. [tex]-\frac{5}{8} \pi[/tex]

C. [tex]-\frac{\pi}{5}[/tex]

D. [tex]-\frac{1}{5} \pi[/tex]



Answer :

To convert an angle from degrees to radians, you can use the conversion factor where [tex]\(1^\circ = \frac{\pi}{180}\)[/tex] radians. Hence, the formula to convert degrees to radians is:

[tex]\[ \text{radians} = \text{degrees} \times \frac{\pi}{180} \][/tex]

Given that the angle is [tex]\(-36^\circ\)[/tex], we apply the formula as follows:

[tex]\[ \text{radians} = -36 \times \frac{\pi}{180} \][/tex]

Simplify the fraction:

[tex]\[ \text{radians} = -36 \times \frac{\pi}{180} = -36 \div 180 \times \pi = -\frac{36}{180} \times \pi = -\frac{1}{5} \times \pi = -\frac{\pi}{5} \][/tex]

Thus, [tex]\(-36^\circ\)[/tex] is equal to [tex]\(-\frac{\pi}{5}\)[/tex] radians.

The answer is:

[tex]\[ -\frac{\pi}{5} \][/tex]