To find the zeros of the function [tex]\( y = (x - 4)(x^2 - 12x + 36) \)[/tex], we need to determine the values of [tex]\( x \)[/tex] that make [tex]\( y = 0 \)[/tex]. The function [tex]\( y \)[/tex] is already factored as the product of two expressions: [tex]\( x - 4 \)[/tex] and [tex]\( x^2 - 12x + 36 \)[/tex]. We will solve for [tex]\( x \)[/tex] by setting each factor to zero.
1. Set [tex]\( x - 4 = 0 \)[/tex]: [tex]\[
x - 4 = 0
\][/tex] Solving for [tex]\( x \)[/tex]: [tex]\[
x = 4
\][/tex]