Sure, let's break it down step by step:
1. Identify the measurements:
- The first measurement is [tex]\( \frac{1}{8} \)[/tex].
- The second measurement is [tex]\( \frac{1}{16} \)[/tex].
2. Convert the fractions to decimal form for easier comparison:
- [tex]\( \frac{1}{8} \)[/tex] in decimal form is [tex]\( 0.125 \)[/tex].
- [tex]\( \frac{1}{16} \)[/tex] in decimal form is [tex]\( 0.0625 \)[/tex].
3. Subtract the second measurement from the first:
- Subtract [tex]\(0.0625\)[/tex] from [tex]\(0.125\)[/tex]:
[tex]\[
0.125 - 0.0625 = 0.0625
\][/tex]
4. Interpret the result:
- The result of the subtraction is [tex]\( 0.0625 \)[/tex], which confirms that [tex]\(0.0625\)[/tex] is the measurement that is [tex]\( \frac{1}{16} \)[/tex] less than [tex]\( \frac{1}{8} \)[/tex].
So, the measurement that is [tex]\( \frac{1}{16} \)[/tex] less than [tex]\( \frac{1}{8} \)[/tex] is [tex]\( \frac{1}{8} - \frac{1}{16} = 0.0625 \)[/tex].