What is [tex]\frac{\pi}{3}[/tex] radians converted to degrees? If necessary, round your answer to the nearest degree.

A. [tex]30^{\circ}[/tex]
B. [tex]45^{\circ}[/tex]
C. [tex]60^{\circ}[/tex]
D. [tex]90^{\circ}[/tex]



Answer :

To convert an angle from radians to degrees, we use the fact that [tex]\( \pi \)[/tex] radians is equivalent to [tex]\( 180^\circ \)[/tex]. Therefore, to convert an angle in radians to degrees, we can use the following relationship:

[tex]\[ \text{Degrees} = \text{Radians} \times \left(\frac{180}{\pi}\right) \][/tex]

Given the angle [tex]\( \frac{\pi}{3} \)[/tex] radians, we can apply this conversion formula:

[tex]\[ \text{Degrees} = \frac{\pi}{3} \times \left(\frac{180}{\pi}\right) \][/tex]

Simplifying this expression:

[tex]\[ \text{Degrees} = \frac{\pi \times 180}{3 \times \pi} = \frac{180}{3} = 60 \][/tex]

So, the angle [tex]\( \frac{\pi}{3} \)[/tex] radians is equivalent to [tex]\( 60^\circ \)[/tex].

If necessary, we round the answer to the nearest degree. In this case, the degrees value is already a whole number, so there is no further rounding needed.

Therefore, the angle [tex]\( \frac{\pi}{3} \)[/tex] radians converted to degrees is:

[tex]\[ 60^\circ \][/tex]

So, the correct answer from the options given is [tex]\( 60^\circ \)[/tex].