Use the confidence level and sample data to find a confidence interval for estimating the population [tex]$\mu$[/tex]. Round your answer to the same number of decimal places as the sample mean.

A random sample of 187 full-grown lobsters had a mean weight of 19 ounces and a standard deviation of 3.3 ounces. Construct a [tex]$98\%$[/tex] confidence interval for the population mean [tex]$\mu$[/tex].

A. [tex]$17 \text{ oz} \ \textless \ \mu \ \textless \ 19 \text{ oz}$[/tex]
B. [tex]$19 \text{ oz} \ \textless \ \mu \ \textless \ 21 \text{ oz}$[/tex]
C. [tex]$18 \text{ oz} \ \textless \ \mu \ \textless \ 21 \text{ oz}$[/tex]
D. [tex]$18 \text{ oz} \ \textless \ \mu \ \textless \ 20 \text{ oz}$[/tex]



Answer :

To construct a 98% confidence interval for the population mean [tex]\(\mu\)[/tex], we need to follow a series of steps:

1. Identify the sample statistics:
- Sample size ([tex]\(n\)[/tex]) = 187
- Sample mean ([tex]\(\bar{x}\)[/tex]) = 19 ounces
- Sample standard deviation ([tex]\(s\)[/tex]) = 3.3 ounces
- Confidence level = 98%

2. Calculate the standard error of the mean:
The standard error (SE) is given by the formula:
[tex]\[ SE = \frac{s}{\sqrt{n}} \][/tex]
Plugging in the given values:
[tex]\[ SE = \frac{3.3}{\sqrt{187}} \approx 0.24 \][/tex]

3. Find the critical z-value for the given confidence level:
For a 98% confidence level, the critical z-value (z*) corresponds to the area in the middle 98% of the standard normal distribution, leaving 1% in each tail. The critical z-value is approximately 2.33.

4. Calculate the margin of error (ME):
The margin of error is given by:
[tex]\[ ME = z^* \cdot SE \][/tex]
Plugging in the values:
[tex]\[ ME = 2.33 \cdot 0.24 \approx 0.56 \][/tex]

5. Determine the confidence interval:
The confidence interval is calculated as:
[tex]\[ (\bar{x} - ME, \bar{x} + ME) \][/tex]
Substituting the values:
[tex]\[ (19 - 0.56, 19 + 0.56) \approx (18.4, 19.6) \][/tex]

Therefore, the 98% confidence interval for the population mean [tex]\(\mu\)[/tex] is approximately [tex]\((18.4, 19.6)\)[/tex] ounces.

Comparing this result with the given options:
- [tex]\(17 \text{ oz} < \mu < 19 \text{ oz}\)[/tex]
- [tex]\(19 \text{ oz} < \mu < 21 \text{ oz}\)[/tex]
- [tex]\(18 \text{ oz} < \mu < 21 \text{ oz}\)[/tex]
- [tex]\(18 \text{ oz} < \mu < 20 \text{ oz}\)[/tex]

None of the provided options exactly match the calculated confidence interval of [tex]\((18.4, 19.6)\)[/tex]. However, the confidence interval we found properly answers the question of estimating the population mean [tex]\(\mu\)[/tex].