Find the length of the side not given when [tex]\(c\)[/tex] is the hypotenuse and [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are the legs. Given [tex]\(a = 9\)[/tex] and [tex]\(c = 13\)[/tex]:

A. 88
B. [tex]\(2 \sqrt{22}\)[/tex]
C. 250
D. [tex]\(5 \sqrt{10}\)[/tex]



Answer :

To solve for the missing side [tex]\( b \)[/tex] of a right triangle, given that [tex]\( a = 9 \)[/tex] (one of the legs) and [tex]\( c = 13 \)[/tex] (the hypotenuse), we will use the Pythagorean theorem:

The Pythagorean theorem states that in a right triangle, the square of the hypotenuse [tex]\( c \)[/tex] is equal to the sum of the squares of the other two sides [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ c^2 = a^2 + b^2 \][/tex]

Given:
[tex]\[ a = 9 \quad \text{and} \quad c = 13 \][/tex]

Step 1: Substitute the given values into the Pythagorean theorem:
[tex]\[ 13^2 = 9^2 + b^2 \][/tex]

Step 2: Calculate the squares:
[tex]\[ 169 = 81 + b^2 \][/tex]

Step 3: Isolate [tex]\( b^2 \)[/tex] by subtracting 81 from both sides:
[tex]\[ 169 - 81 = b^2 \][/tex]
[tex]\[ 88 = b^2 \][/tex]

Step 4: To find [tex]\( b \)[/tex], take the square root of both sides:
[tex]\[ b = \sqrt{88} \][/tex]

The result [tex]\( \sqrt{88} \)[/tex] can also be simplified:
[tex]\[ b = \sqrt{4 \times 22} = 2 \sqrt{22} \][/tex]

Therefore, the missing side [tex]\( b \)[/tex] is [tex]\( 2 \sqrt{22} \)[/tex].

So the length of the side not given is:
[tex]\[ b = 2 \sqrt{22} \][/tex]