Find the length of the side not given when [tex]$c$[/tex] is the hypotenuse and [tex]$a$[/tex] and [tex][tex]$b$[/tex][/tex] are the legs.

Given:
[tex]a = 9[/tex]
[tex]c = 13[/tex]

Options:
A. 88
B. [tex]2 \sqrt{22}[/tex]
C. 250
D. [tex]5 \sqrt{10}[/tex]



Answer :

To find the length of the missing side [tex]\( b \)[/tex] in a right triangle where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the legs and [tex]\( c \)[/tex] is the hypotenuse, we use the Pythagorean theorem:

[tex]\[ a^2 + b^2 = c^2 \][/tex]

Given:
[tex]\[ a = 9, \quad c = 13 \][/tex]

We need to find [tex]\( b \)[/tex]. According to the Pythagorean theorem, we can solve for [tex]\( b^2 \)[/tex]:

[tex]\[ b^2 = c^2 - a^2 \][/tex]

Substitute the values of [tex]\( a \)[/tex] and [tex]\( c \)[/tex] into the equation:

[tex]\[ b^2 = 13^2 - 9^2 \][/tex]

Calculate [tex]\( 13^2 \)[/tex] and [tex]\( 9^2 \)[/tex]:

[tex]\[ 13^2 = 169 \][/tex]
[tex]\[ 9^2 = 81 \][/tex]

Now, subtract [tex]\( 9^2 \)[/tex] from [tex]\( 13^2 \)[/tex]:

[tex]\[ b^2 = 169 - 81 = 88 \][/tex]

We have determined that [tex]\( b^2 = 88 \)[/tex]. To find [tex]\( b \)[/tex], we need to take the square root of [tex]\( 88 \)[/tex]:

[tex]\[ b = \sqrt{88} \][/tex]

Simplifying [tex]\( \sqrt{88} \)[/tex]:

[tex]\[ \sqrt{88} = \sqrt{4 \times 22} = \sqrt{4} \times \sqrt{22} = 2\sqrt{22} \][/tex]

Therefore, the length of side [tex]\( b \)[/tex] is:

[tex]\[ b = 2\sqrt{22} \][/tex]

So the correct answer is:

[tex]\[ 2 \sqrt{22} \][/tex]