Use the sum-to-product formula to simplify the expression:

If [tex]\sin 38^{\circ} + \sin 22^{\circ} = \sin A^{\circ}, \ 0 \ \textless \ A \ \textless \ 90[/tex], then [tex]A = \boxed{\ \ }[/tex] degrees.



Answer :

To simplify the expression [tex]\(\sin 38^\circ + \sin 22^\circ\)[/tex] using the sum-to-product identity, we follow these steps:

1. Sum-to-Product Formula for Sine:

The sum-to-product identity for sine states:
[tex]\[ \sin x + \sin y = 2 \sin \left( \frac{x + y}{2} \right) \cos \left( \frac{x - y}{2} \right) \][/tex]

2. Assign the Values:

Let [tex]\(x = 38^\circ\)[/tex] and [tex]\(y = 22^\circ\)[/tex]. We want to simplify [tex]\(\sin 38^\circ + \sin 22^\circ\)[/tex].

3. Calculate the Intermediate Angles:

First, we need to find:
[tex]\[ \frac{x + y}{2} = \frac{38^\circ + 22^\circ}{2} = \frac{60^\circ}{2} = 30^\circ \][/tex]
And,
[tex]\[ \frac{x - y}{2} = \frac{38^\circ - 22^\circ}{2} = \frac{16^\circ}{2} = 8^\circ \][/tex]

4. Rewrite the Expression Using the Identity:

Substituting these values into the sum-to-product formula, we get:
[tex]\[ \sin 38^\circ + \sin 22^\circ = 2 \sin \left(30^\circ\right) \cos \left(8^\circ\right) \][/tex]

5. Interpret the Expression:

Notice that in the problem statement, we are given that [tex]\(\sin 38^\circ + \sin 22^\circ = \sin A^\circ\)[/tex]. Thus, we need to determine the angle [tex]\(A\)[/tex] such that:
[tex]\[ \sin A^\circ = 2 \sin \left(30^\circ\right) \cos \left(8^\circ\right) \][/tex]

6. Simplify Further Using Trigonometric Values:

We know that:
[tex]\[ \sin 30^\circ = \frac{1}{2} \][/tex]

Therefore:
[tex]\[ 2 \sin \left(30^\circ\right) \cos \left(8^\circ\right) = 2 \left(\frac{1}{2}\right) \cos \left(8^\circ\right) = \cos \left(8^\circ\right) \][/tex]

Since we have simplified to an angle equal relationship, we conclude:
[tex]\[ \sin 38^\circ + \sin 22^\circ = \sin 30^\circ \][/tex]

7. Final Answer:

Therefore, the angle [tex]\(A\)[/tex] is:
[tex]\[ A = 30^\circ \][/tex]

So, [tex]\(A = 30^\circ\)[/tex].