Simplify the expression so that no negative exponents appear in the final result. Assume all variables represent nonzero numbers.

[tex]\[ \frac{(3 x^2 y^3)^6}{9 x y^2} \][/tex]

A. [tex]\(81 x^{11} y^{16}\)[/tex]

B. [tex]\(\frac{x^{11} y^{16}}{3}\)[/tex]

C. [tex]\(\frac{x^7 y^7}{3}\)[/tex]

D. [tex]\(81 x^7 y^7\)[/tex]



Answer :

Certainly! Let's simplify the given expression:

[tex]\[ \frac{\left(3 x^2 y^3\right)^6}{9 x y^2} \][/tex]

First, we’ll simplify the numerator by raising the entire term [tex]\((3 x^2 y^3)\)[/tex] to the power of 6.

### Step 1: Simplify the numerator
We need to apply the exponent of 6 to each component inside the parentheses:
[tex]\[ (3 x^2 y^3)^6 = 3^6 \cdot (x^2)^6 \cdot (y^3)^6 \][/tex]

Calculating each term individually:
[tex]\[ 3^6 = 729 \][/tex]
[tex]\[ (x^2)^6 = x^{2 \cdot 6} = x^{12} \][/tex]
[tex]\[ (y^3)^6 = y^{3 \cdot 6} = y^{18} \][/tex]

Combining these results, the simplified numerator is:
[tex]\[ 729 x^{12} y^{18} \][/tex]

### Step 2: Simplify the denominator
Now we simplify the denominator:
[tex]\[ 9 x y^2 \][/tex]

### Step 3: Divide the numerator by the denominator
We substitute the simplified forms of the numerator and denominator into the original expression:
[tex]\[ \frac{729 x^{12} y^{18}}{9 x y^2} \][/tex]

We can simplify this fraction by dividing the coefficients and subtracting the exponents of like bases:

[tex]\[ \frac{729 x^{12} y^{18}}{9 x y^2} = \frac{729}{9} \cdot \frac{x^{12}}{x^1} \cdot \frac{y^{18}}{y^2} \][/tex]

Perform the division for each part:
[tex]\[ \frac{729}{9} = 81 \][/tex]
[tex]\[ \frac{x^{12}}{x^1} = x^{12-1} = x^{11} \][/tex]
[tex]\[ \frac{y^{18}}{y^2} = y^{18-2} = y^{16} \][/tex]

Putting all these together, we get:
[tex]\[ 81 x^{11} y^{16} \][/tex]

So the simplified expression is:
[tex]\[ 81 x^{11} y^{16} \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{81 x^{11} y^{16}} \][/tex]