If [tex]\sin \theta \leq -0.7660[/tex], which of the following represents an approximate value of [tex]\tan \theta[/tex] for [tex]180^{\circ} \ \textless \ \theta \ \textless \ 270^{\circ}[/tex]?

A. 0.7660
B. 0.8392
C. 1.1916
D. 1.4198



Answer :

To find the approximate value of [tex]\(\tan \theta\)[/tex] for [tex]\(180^{\circ} < \theta < 270^{\circ}\)[/tex] given that [tex]\(\sin \theta \leq -0.7660\)[/tex], we need to follow these steps:

1. Understand the given interval:
- In the interval [tex]\(180^{\circ} < \theta < 270^{\circ}\)[/tex], both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are negative, making [tex]\(\tan \theta\)[/tex] positive because [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex].

2. Given value:
- We are given [tex]\(\sin \theta \leq -0.7660\)[/tex]. For our calculations, we'll use [tex]\(\sin \theta = -0.7660\)[/tex].

3. Calculate [tex]\(\cos \theta\)[/tex]:
- We use the Pythagorean identity: [tex]\(\sin^2(\theta) + \cos^2(\theta) = 1\)[/tex].
- Plugging in the value, we get:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
[tex]\[ (-0.7660)^2 + \cos^2(\theta) = 1 \][/tex]
- Squaring [tex]\(-0.7660\)[/tex]:
[tex]\[ 0.7660^2 = 0.5876359999999999 \][/tex]
- So,
[tex]\[ 0.5876359999999999 + \cos^2(\theta) = 1 \][/tex]
[tex]\[ \cos^2(\theta) = 1 - 0.5876359999999999 \][/tex]
[tex]\[ \cos^2(\theta) = 0.41236400000000006 \][/tex]
- Taking the square root to find [tex]\(\cos(\theta)\)[/tex], and considering [tex]\(\cos \theta\)[/tex] is negative in this interval:
[tex]\[ \cos(\theta) = -\sqrt{0.41236400000000006} \][/tex]
[tex]\[ \cos(\theta) \approx -0.6428405712149786 \][/tex]

4. Calculate [tex]\(\tan \theta\)[/tex]:
- Using [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex]:
[tex]\[ \tan(\theta) = \frac{-0.7660}{-0.6428405712149786} \][/tex]
[tex]\[ \tan(\theta) \approx 1.1915862723975996 \][/tex]

5. Conclusion:
- The approximate value of [tex]\(\tan \theta\)[/tex] is around 1.1916.

So, the correct answer is:
[tex]\[ \boxed{1.1916} \][/tex]