Carolyn is using the table to find [tex]$360\%$[/tex] of 15. What values do [tex]$X$[/tex] and [tex]$Y$[/tex] represent in her table?

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Percent} \\
\hline $100\%$ & $100\%$ & $100\%$ & $20\%$ & $20\%$ & $20\%$ & $360\%$ \\
\hline $X$ & $X$ & $X$ & $Y$ & $Y$ & $Y$ & \\
\hline
\end{tabular}
\][/tex]

A. [tex]$X=2.5 ; Y=2.5$[/tex]

B. [tex]$X=5 ; Y=0.75$[/tex]

C. [tex]$X=15 ; Y=3$[/tex]

D. [tex]$X=15 ; Y=5$[/tex]



Answer :

To solve this problem, let's break it down step by step.

1. We are given that Carolyn is using a table to find 360% of 15.
2. The table provided includes the percentage values and their corresponding values for [tex]\( X \)[/tex] and [tex]\( Y \)[/tex].
3. Our goal is to determine the values of [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] that fit the given percentages.

Looking at the table header:
- For [tex]\( 100\% \)[/tex], the value is [tex]\( X \)[/tex].
- For [tex]\( 20\% \)[/tex], the value is [tex]\( Y \)[/tex].

From the resulting answer provided:
- [tex]\( X \)[/tex] for 100% is found to be 15.
- [tex]\( Y \)[/tex] for 20% is found to be 3.

Now, let's match these values to the given options:

- [tex]\( X = 2.5 ; Y = 2.5 \)[/tex]
- [tex]\( X = 5 ; Y = 0.75 \)[/tex]
- [tex]\( X = 15 ; Y = 3 \)[/tex]
- [tex]\( X = 15 ; Y = 5 \)[/tex]

Since [tex]\( X = 15 \)[/tex] and [tex]\( Y = 3\)[/tex] are the correct calculated values:

The correct option is:
[tex]\( X = 15 ; Y = 3 \)[/tex].