Answer :
Sure! Let's add the polynomials [tex]\((7n^5 + 2n + 6n^4)\)[/tex] and [tex]\((9n^4 + 3n^5 + 3n)\)[/tex].
First, let's identify and combine the like terms from each polynomial:
1. Combine the [tex]\(n^5\)[/tex] terms:
- From the first polynomial: [tex]\(7n^5\)[/tex]
- From the second polynomial: [tex]\(3n^5\)[/tex]
- Sum: [tex]\(7n^5 + 3n^5 = 10n^5\)[/tex]
2. Combine the [tex]\(n^4\)[/tex] terms:
- From the first polynomial: [tex]\(6n^4\)[/tex]
- From the second polynomial: [tex]\(9n^4\)[/tex]
- Sum: [tex]\(6n^4 + 9n^4 = 15n^4\)[/tex]
3. Combine the [tex]\(n\)[/tex] terms:
- From the first polynomial: [tex]\(2n\)[/tex]
- From the second polynomial: [tex]\(3n\)[/tex]
- Sum: [tex]\(2n + 3n = 5n\)[/tex]
Therefore, the result of adding the two polynomials is:
[tex]\[ 10n^5 + 15n^4 + 5n \][/tex]
So the correct answer is:
[tex]\[ \boxed{10n^5 + 15n^4 + 5n} \][/tex]
Therefore, the correct option is:
A. [tex]\(10n^5 + 15n^4 + 5n\)[/tex]
First, let's identify and combine the like terms from each polynomial:
1. Combine the [tex]\(n^5\)[/tex] terms:
- From the first polynomial: [tex]\(7n^5\)[/tex]
- From the second polynomial: [tex]\(3n^5\)[/tex]
- Sum: [tex]\(7n^5 + 3n^5 = 10n^5\)[/tex]
2. Combine the [tex]\(n^4\)[/tex] terms:
- From the first polynomial: [tex]\(6n^4\)[/tex]
- From the second polynomial: [tex]\(9n^4\)[/tex]
- Sum: [tex]\(6n^4 + 9n^4 = 15n^4\)[/tex]
3. Combine the [tex]\(n\)[/tex] terms:
- From the first polynomial: [tex]\(2n\)[/tex]
- From the second polynomial: [tex]\(3n\)[/tex]
- Sum: [tex]\(2n + 3n = 5n\)[/tex]
Therefore, the result of adding the two polynomials is:
[tex]\[ 10n^5 + 15n^4 + 5n \][/tex]
So the correct answer is:
[tex]\[ \boxed{10n^5 + 15n^4 + 5n} \][/tex]
Therefore, the correct option is:
A. [tex]\(10n^5 + 15n^4 + 5n\)[/tex]