If [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are two integers, then which of the following may NOT be an integer?

A. [tex]\( a + b \)[/tex]
B. [tex]\( a - b \)[/tex]
C. [tex]\( a \div b \)[/tex]
D. [tex]\( a \times b \)[/tex]

[tex]\((-11) \times 9\)[/tex] is NOT equal to:

A. [tex]\( 11 \times (-9) \)[/tex]
B. [tex]\(- (11 \times 9) \)[/tex]
C. [tex]\((-11) \times (-9) \)[/tex]
D. [tex]\( 9 \times (-11) \)[/tex]



Answer :

Let's go through each part of the question in detail:

### First Part: Integer Operations

We are given two integers, [tex]\(a\)[/tex] and [tex]\(b\)[/tex]. We need to determine which of the following operations may NOT yield an integer:

(a) [tex]\(a + b\)[/tex]
(b) [tex]\(a - b\)[/tex]
(c) [tex]\(a \div b\)[/tex] (note this presumably refers to the division operation [tex]\(a / b\)[/tex])
(d) [tex]\(a \times b\)[/tex]

1. Addition ([tex]\(a + b\)[/tex]):
- Adding two integers always results in an integer.
- For example, if [tex]\(a = 3\)[/tex] and [tex]\(b = 2\)[/tex], then [tex]\(3 + 2 = 5\)[/tex].

2. Subtraction ([tex]\(a - b\)[/tex]):
- Subtracting one integer from another always results in an integer.
- Using our example, [tex]\(3 - 2 = 1\)[/tex].

3. Division ([tex]\(a / b\)[/tex]):
- Dividing one integer by another does not necessarily result in an integer. This operation may yield a fraction or a decimal.
- For example, [tex]\(3 / 2 = 1.5\)[/tex], which is not an integer.

4. Multiplication ([tex]\(a \times b\)[/tex]):
- Multiplying two integers always results in an integer.
- Using our example, [tex]\(3 \times 2 = 6\)[/tex].

Therefore, the operation that may NOT be an integer is:
(c) [tex]\(a \div b\)[/tex].

### Second Part: Multiplications resulting in specified products

We are asked to determine which of the following expressions is NOT equal to [tex]\( (-11) \times 9 \)[/tex]:

(a) [tex]\(11 \times (-9)\)[/tex]
(b) [tex]\(-(11 \times 9)\)[/tex]
(c) [tex]\((-11) \times (-9)\)[/tex]
(d) [tex]\(9 \times (-11)\)[/tex]

1. Calculate [tex]\( (-11) \times 9 \)[/tex]:
- [tex]\((-11) \times 9 = -99\)[/tex]

2. Evaluate each option:

(a) [tex]\(11 \times (-9)\)[/tex]:
- [tex]\(11 \times (-9) = -99\)[/tex]
- This is equal to [tex]\((-11) \times 9\)[/tex].

(b) [tex]\(-(11 \times 9)\)[/tex]:
- [tex]\(11 \times 9 = 99\)[/tex]
- [tex]\(-(99) = -99\)[/tex]
- This is equal to [tex]\((-11) \times 9\)[/tex].

(c) [tex]\((-11) \times (-9)\)[/tex]:
- [tex]\((-11) \times (-9) = 99\)[/tex]
- This is NOT equal to [tex]\((-11) \times 9\)[/tex].

(d) [tex]\(9 \times (-11)\)[/tex]:
- [tex]\(9 \times (-11) = -99\)[/tex]
- This is equal to [tex]\((-11) \times 9\)[/tex].

Therefore, the expression that is NOT equal to [tex]\( (-11) \times 9 \)[/tex] is:
(c) [tex]\((-11) \times (-9)\)[/tex].

### Summary:

1. The operation which may NOT be an integer: (c) [tex]\(a \div b\)[/tex].
2. [tex]\( (-11) \times 9 \)[/tex] is NOT equal to: (c) [tex]\((-11) \times (-9)\)[/tex].

So the answers are:
1. [tex]\(3\)[/tex]
2. [tex]\(3\)[/tex]