Solve the rational equation:

[tex]\[
\frac{4}{t} - \frac{8}{7} = -\frac{4}{t}
\][/tex]

Answer: [tex]\( t = \square \)[/tex]

Enter your answer as an integer or rational number in the form [tex]\( A/B \)[/tex].



Answer :

To solve the rational equation [tex]\(\frac{4}{t} - \frac{8}{7} = -\frac{4}{t}\)[/tex], follow these steps:

1. Combine the terms involving [tex]\(t\)[/tex] on one side of the equation:

[tex]\[ \frac{4}{t} - \frac{8}{7} = -\frac{4}{t} \][/tex]

Move [tex]\(\frac{4}{t}\)[/tex] from the left-hand side to the right-hand side by adding [tex]\(\frac{4}{t}\)[/tex] to both sides:

[tex]\[ \frac{4}{t} + \frac{4}{t} = \frac{8}{7} \][/tex]

2. Simplify the left-hand side:

[tex]\[ \frac{4}{t} + \frac{4}{t} = \frac{8}{t} \][/tex]

Combining the fractions:

[tex]\[ \frac{8}{t} = \frac{8}{7} \][/tex]

3. Solve for [tex]\(t\)[/tex]:

To isolate [tex]\(t\)[/tex], cross-multiply:

[tex]\[ 8 \cdot 7 = 8 \cdot t \][/tex]

Simplify the equation:

[tex]\[ 56 = 8t \][/tex]

Divide both sides by 8 to solve for [tex]\(t\)[/tex]:

[tex]\[ t = \frac{56}{8} \][/tex]

4. Simplify the fraction:

[tex]\[ t = 7 \][/tex]

Therefore, the solution to the equation is:

[tex]\[ t = 7 \][/tex]

So, [tex]\(t = 7\)[/tex].