Given: [tex]15x \ \textless \ -45[/tex]

Choose the solution set:

A. [tex]\{x \mid x \ \textless \ -3\}[/tex]

B. [tex]\{x \mid x \ \textgreater \ 3\}[/tex]

C. [tex]\{x \mid x \ \textless \ 3\}[/tex]

D. [tex]\{x \mid x \ \textgreater \ -3\}[/tex]



Answer :

Let's solve the inequality [tex]\( 15x < -45 \)[/tex] step-by-step:

1. Start with the given inequality:
[tex]\[ 15x < -45 \][/tex]

2. Isolate the variable [tex]\( x \)[/tex]:
To do this, we need to divide both sides of the inequality by 15. It's important to remember that when dividing by a positive number, the direction of the inequality does not change.

[tex]\[ \frac{15x}{15} < \frac{-45}{15} \][/tex]

3. Simplify the fractions:
On the left side, [tex]\( \frac{15x}{15} \)[/tex] simplifies to [tex]\( x \)[/tex], and on the right side, [tex]\( \frac{-45}{15} \)[/tex] simplifies to [tex]\( -3 \)[/tex].

[tex]\[ x < -3 \][/tex]

4. Determine the solution set:
The inequality [tex]\( x < -3 \)[/tex] indicates that [tex]\( x \)[/tex] can be any value less than -3.

The correct solution set for the inequality [tex]\( 15x < -45 \)[/tex] is:
[tex]\[ \{x \mid x < -3\} \][/tex]

So, the solution set is:

[tex]\[ \{x \mid x < -3\} \][/tex]