Consider the power [tex]$(-4)^{-3}$[/tex].

1. Apply the negative exponents rule: [tex]\frac{1}{(-4)^3}[/tex].
2. Expand the exponent.
3. Simplify.

What is the value of [tex]$(-4)^{-3}$[/tex]?

A. [tex]-\frac{1}{64}[/tex]
B. [tex]-\frac{1}{12}[/tex]
C. [tex]\frac{1}{64}[/tex]
D. [tex]\frac{1}{12}[/tex]



Answer :

Let's solve the expression step-by-step.


1. Start with the given power: [tex]\[ (-4)^{-3} \][/tex]

2. Apply the negative exponents rule: [tex]\[ (-4)^{-3} = \frac{1}{(-4)^3} \][/tex]

3. Now, calculate [tex]\((-4)^3\)[/tex]. To do this, expand the exponent:

[tex]\[ (-4)^3 = (-4) \times (-4) \times (-4) \][/tex]

4. Simplify the multiplication step-by-step:

- Multiply the first two factors: [tex]\[ (-4) \times (-4) = 16 \][/tex]
- Then, multiply the result by the third factor: [tex]\[ 16 \times (-4) = -64 \][/tex]

5. Therefore, [tex]\((-4)^3 = -64\)[/tex], so we can substitute this back into our fraction: [tex]\[ \frac{1}{(-4)^3} = \frac{1}{-64} \][/tex]

6. The value of [tex]\(\frac{1}{-64}\)[/tex] is:

[tex]\[ -\frac{1}{64} \][/tex]

So, the value of [tex]\((-4)^{-3}\)[/tex] is [tex]\(-\frac{1}{64}\)[/tex]. The correct answer is:

[tex]\[ -\frac{1}{64} \][/tex]