Given: [tex]\frac{5z}{11} \ \textless \ 2[/tex]

Choose the solution set.

A. [tex]\{x \mid x \ \textless \ \frac{10}{11}\}[/tex]
B. [tex]\{x \mid x \ \textgreater \ \frac{10}{11}\}[/tex]
C. [tex]\{x \mid x \ \textgreater \ \frac{22}{5}\}[/tex]
D. [tex]\{x \mid x \ \textless \ \frac{22}{5}\}[/tex]



Answer :

Let's analyze the given inequality step-by-step.

Given inequality:
[tex]\[ \frac{5z}{11} < 2 \][/tex]

We need to isolate [tex]\( z \)[/tex]. To do this, we will eliminate the fraction by multiplying both sides of the inequality by 11, the denominator of the fraction on the left side. This gives us:
[tex]\[ 5z < 2 \cdot 11 \][/tex]

Simplifying the right-hand side, we get:
[tex]\[ 5z < 22 \][/tex]

Next, we need to solve for [tex]\( z \)[/tex] by isolating it. We do this by dividing both sides of the inequality by 5:
[tex]\[ z < \frac{22}{5} \][/tex]

Calculating the numerical value of [tex]\( \frac{22}{5} \)[/tex]:
[tex]\[ \frac{22}{5} = 4.4 \][/tex]

Therefore, the solution set for the given inequality is:
[tex]\[ \{ z \mid z < \frac{22}{5} \} \][/tex]
or equivalently,
[tex]\[ \{ z \mid z < 4.4 \} \][/tex]

Among the given options, the correct solution set is:
\[
\{ x \mid x < \frac{22}{5} \}