```markdown
Part A

Prove that when [tex]\( x \ \textgreater \ 1 \)[/tex], a triangle with side lengths [tex]\( a = x^2 - 1 \)[/tex], [tex]\( b = 2x \)[/tex], and [tex]\( c = x^2 + 1 \)[/tex] is a right triangle.

Use the Pythagorean theorem and the given side lengths to create an equation. Use the equation to show that this triangle follows the rule describing right triangles. Explain your steps.
```



Answer :

To show that a triangle with side lengths [tex]\(a = x^2 - 1\)[/tex], [tex]\(b = 2x\)[/tex], and [tex]\(c = x^2 + 1\)[/tex] is a right triangle for any [tex]\(x > 1\)[/tex], we can use the Pythagorean theorem. The theorem states that in a right triangle, the square of the length of the hypotenuse ([tex]\(c\)[/tex]) is equal to the sum of the squares of the lengths of the other two sides ([tex]\(a\)[/tex] and [tex]\(b\)[/tex]). That is, [tex]\(a^2 + b^2 = c^2\)[/tex].

Given:
[tex]\[ a = x^2 - 1 \][/tex]
[tex]\[ b = 2x \][/tex]
[tex]\[ c = x^2 + 1 \][/tex]

Let's compute [tex]\(a^2\)[/tex], [tex]\(b^2\)[/tex], and [tex]\(c^2\)[/tex]:

1. Compute [tex]\(a^2\)[/tex]:
[tex]\[ a^2 = (x^2 - 1)^2 = x^4 - 2x^2 + 1 \][/tex]

2. Compute [tex]\(b^2\)[/tex]:
[tex]\[ b^2 = (2x)^2 = 4x^2 \][/tex]

3. Compute [tex]\(c^2\)[/tex]:
[tex]\[ c^2 = (x^2 + 1)^2 = x^4 + 2x^2 + 1 \][/tex]

Now, let's add [tex]\(a^2\)[/tex] and [tex]\(b^2\)[/tex]:
[tex]\[ a^2 + b^2 = (x^4 - 2x^2 + 1) + 4x^2 \][/tex]

Simplify the expression:
[tex]\[ a^2 + b^2 = x^4 - 2x^2 + 1 + 4x^2 \][/tex]
[tex]\[ a^2 + b^2 = x^4 + 2x^2 + 1 \][/tex]

We have found:
[tex]\[ a^2 + b^2 = x^4 + 2x^2 + 1 \][/tex]

Compare this with [tex]\(c^2\)[/tex]:
[tex]\[ c^2 = x^4 + 2x^2 + 1 \][/tex]

Since [tex]\(a^2 + b^2 = c^2\)[/tex], it confirms that the triangle with side lengths [tex]\(a = x^2 - 1\)[/tex], [tex]\(b = 2x\)[/tex], and [tex]\(c = x^2 + 1\)[/tex] is indeed a right triangle for any [tex]\(x > 1\)[/tex].

Hence, by checking both sides of the equation [tex]\(a^2 + b^2 = c^2\)[/tex] and finding them equal, we have proven that the given lengths follow the rule describing right triangles according to the Pythagorean theorem.