Answer :
To solve the inequality
[tex]\[ \frac{-4j - 2}{2} \leq 4j + 5, \][/tex]
we will follow these steps:
1. Simplify the left-hand side of the inequality:
[tex]\[ \frac{-4j - 2}{2}. \][/tex]
Divide each term in the numerator by 2:
[tex]\[ \frac{-4j}{2} + \frac{-2}{2} = -2j - 1. \][/tex]
This simplifies the inequality to:
[tex]\[ -2j - 1 \leq 4j + 5. \][/tex]
2. Isolate [tex]\( j \)[/tex] on one side:
To isolate [tex]\( j \)[/tex], we need to get all terms involving [tex]\( j \)[/tex] on one side and constants on the other side. Start by adding [tex]\( 2j \)[/tex] to both sides to get rid of the [tex]\( -2j \)[/tex] term on the left:
[tex]\[ -2j - 1 + 2j \leq 4j + 5 + 2j. \][/tex]
Simplifying this, we get:
[tex]\[ -1 \leq 6j + 5. \][/tex]
3. Move the constant term to the other side:
Subtract 5 from both sides to isolate the [tex]\( j \)[/tex]-term:
[tex]\[ -1 - 5 \leq 6j. \][/tex]
Simplifying this, we get:
[tex]\[ -6 \leq 6j. \][/tex]
4. Solve for [tex]\( j \)[/tex]:
Divide both sides by 6 to isolate [tex]\( j \)[/tex]:
[tex]\[ \frac{-6}{6} \leq j. \][/tex]
Simplifying this, we get:
[tex]\[ -1 \leq j. \][/tex]
This means [tex]\( j \)[/tex] must be greater than or equal to [tex]\(-1\)[/tex].
The solution can be written in interval notation as:
[tex]\[ j \in [-1, \infty). \][/tex]
Thus, the solution to the inequality is
[tex]\[ \boxed{-1 \leq j < \infty}. \][/tex]
[tex]\[ \frac{-4j - 2}{2} \leq 4j + 5, \][/tex]
we will follow these steps:
1. Simplify the left-hand side of the inequality:
[tex]\[ \frac{-4j - 2}{2}. \][/tex]
Divide each term in the numerator by 2:
[tex]\[ \frac{-4j}{2} + \frac{-2}{2} = -2j - 1. \][/tex]
This simplifies the inequality to:
[tex]\[ -2j - 1 \leq 4j + 5. \][/tex]
2. Isolate [tex]\( j \)[/tex] on one side:
To isolate [tex]\( j \)[/tex], we need to get all terms involving [tex]\( j \)[/tex] on one side and constants on the other side. Start by adding [tex]\( 2j \)[/tex] to both sides to get rid of the [tex]\( -2j \)[/tex] term on the left:
[tex]\[ -2j - 1 + 2j \leq 4j + 5 + 2j. \][/tex]
Simplifying this, we get:
[tex]\[ -1 \leq 6j + 5. \][/tex]
3. Move the constant term to the other side:
Subtract 5 from both sides to isolate the [tex]\( j \)[/tex]-term:
[tex]\[ -1 - 5 \leq 6j. \][/tex]
Simplifying this, we get:
[tex]\[ -6 \leq 6j. \][/tex]
4. Solve for [tex]\( j \)[/tex]:
Divide both sides by 6 to isolate [tex]\( j \)[/tex]:
[tex]\[ \frac{-6}{6} \leq j. \][/tex]
Simplifying this, we get:
[tex]\[ -1 \leq j. \][/tex]
This means [tex]\( j \)[/tex] must be greater than or equal to [tex]\(-1\)[/tex].
The solution can be written in interval notation as:
[tex]\[ j \in [-1, \infty). \][/tex]
Thus, the solution to the inequality is
[tex]\[ \boxed{-1 \leq j < \infty}. \][/tex]