Match each radical equation with its solution.

[tex]\[
\begin{array}{l|l}
\sqrt{(x-1)^3}=8 & x = 19 \\
\sqrt[4]{(x-3)^5}=32 & \\
\sqrt[3]{(x+2)^4}=16 & \\
\end{array}
\][/tex]



Answer :

Sure, let's solve each radical equation step-by-step.

### Equation 1: [tex]\(\sqrt{(x-1)^3} = 8\)[/tex]

1. To eliminate the square root, square both sides of the equation:

[tex]\[ (\sqrt{(x-1)^3})^2 = 8^2 \][/tex]

2. This simplifies to:

[tex]\[ (x-1)^3 = 64 \][/tex]

3. To solve for [tex]\(x\)[/tex], take the cube root of both sides:

[tex]\[ x - 1 = \sqrt[3]{64} \][/tex]

4. Simplify the cube root:

[tex]\[ x - 1 = 4 \][/tex]

5. Finally, solve for [tex]\(x\)[/tex]:

[tex]\[ x = 4 + 1 \][/tex]

[tex]\[ x = 5.0 \][/tex]

### Equation 2: [tex]\(\sqrt[4]{(x-3)^5} = 32\)[/tex]

1. To eliminate the fourth root, raise both sides of the equation to the power of 4:

[tex]\[ (\sqrt[4]{(x-3)^5})^4 = 32^4 \][/tex]

2. This simplifies to:

[tex]\[ (x-3)^5 = 1048576 \][/tex]

3. To solve for [tex]\(x\)[/tex], take the fifth root of both sides:

[tex]\[ x - 3 = \sqrt[5]{1048576} \][/tex]

4. Simplify the fifth root:

[tex]\[ x - 3 = 16 \][/tex]

5. Finally, solve for [tex]\(x\)[/tex]:

[tex]\[ x = 16 + 3 \][/tex]

[tex]\[ x = 19.000000000000004 \][/tex]

### Equation 3: [tex]\(\sqrt[3]{(x+2)^4} = 16\)[/tex]

1. To eliminate the cube root, raise both sides of the equation to the power of 3:

[tex]\[ (\sqrt[3]{(x+2)^4})^3 = 16^3 \][/tex]

2. This simplifies to:

[tex]\[ (x+2)^4 = 4096 \][/tex]

3. To solve for [tex]\(x\)[/tex], take the fourth root of both sides:

[tex]\[ x + 2 = \sqrt[4]{4096} \][/tex]

4. Simplify the fourth root:

[tex]\[ x + 2 = 6 \][/tex]

5. Finally, solve for [tex]\(x\)[/tex]:

[tex]\[ x = 6 - 2 \][/tex]

[tex]\[ x = 4 \][/tex]

### Preset value:

- Given:

[tex]\[ x = 19 \][/tex]

### Summary of solutions:

Therefore, the solutions to the given equations are:

[tex]\[ x_1 = 5.0, \quad x_2 = 19.000000000000004, \quad x_3 = 4, \quad \text{and} \quad x = 19 \][/tex]