The probability distribution for the number of students in Statistics classes offered at a small college is given, but one value is missing. Fill in the missing value, then answer the questions that follow.

[tex]\[
\begin{tabular}{|c|c|}
\hline
X & $P(X)$ \\
\hline
22 & 0.10 \\
\hline
23 & 0.14 \\
\hline
24 & 0.17 \\
\hline
25 & \\
\hline
26 & 0.12 \\
\hline
\end{tabular}
\][/tex]

1. Fill in the missing probability value for [tex]$P(25)$[/tex].
2. Verify that the sum of the probabilities equals 1.



Answer :

To find the missing probability, we can follow these detailed steps:

### Step-by-Step Solution:

1. Identify Given Data:
The table shows the number of students (X) and their corresponding probabilities [tex]\( P(X) \)[/tex]. The given values are:
- [tex]\( P(22) = 0.1 \)[/tex]
- [tex]\( P(23) = 0.14 \)[/tex]
- [tex]\( P(24) = 0.17 \)[/tex]
- [tex]\( P(25) = \)[/tex] (missing)
- [tex]\( P(26) = 0.12 \)[/tex]

2. Sum of Given Probabilities:
Let's sum the provided probabilities:
[tex]\[ P(22) + P(23) + P(24) + P(26) = 0.1 + 0.14 + 0.17 + 0.12 \][/tex]
Calculate this sum:
[tex]\[ 0.1 + 0.14 + 0.17 + 0.12 = 0.53 \][/tex]

3. Determine Missing Probability:
The probabilities in a probability distribution must sum to 1. Therefore, the missing probability is:
[tex]\[ P(25) = 1 - 0.53 \][/tex]
Calculate the missing value:
[tex]\[ P(25) = 0.47 \][/tex]

4. Fill the Missing Value in the Table:
Now, we can update the table with the missing probability value.

\begin{tabular}{|c|c|}
\hline X & [tex]$P(X)$[/tex] \\
\hline 22 & 0.1 \\
\hline 23 & 0.14 \\
\hline 24 & 0.17 \\
\hline 25 & 0.47 \\
\hline 26 & 0.12 \\
\hline
\end{tabular}

Therefore, the missing value is [tex]\( P(25) = 0.47 \)[/tex], and the complete probability distribution is:

[tex]\[ P(X) = [0.1, 0.14, 0.17, 0.47, 0.12] \][/tex]