A triangle has side lengths measuring [tex]$2x + 2$[/tex] ft, [tex]$x + 3$[/tex] ft, and [tex]n$[/tex] ft. Which expression represents the possible values of [tex]n$[/tex], in feet? Express your answer in simplest terms.

A. [tex][tex]$x - 1 \ \textless \ n \ \textless \ 3x + 5$[/tex][/tex]
B. [tex]$n = 3x + 5$[/tex]
C. [tex]$n = x - 1$[/tex]
D. [tex]$3x + 5 \ \textless \ n \ \textless \ x - 1$[/tex]



Answer :

To determine the possible values of [tex]\( n \)[/tex] for the given triangle side lengths, we need to use the triangle inequality theorem. This theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.

Given the sides:
1. [tex]\( 2x + 2 \)[/tex]
2. [tex]\( x + 3 \)[/tex]
3. [tex]\( n \)[/tex]

We need to set up and solve the inequalities:

1. [tex]\( (2x + 2) + (x + 3) > n \)[/tex]
2. [tex]\( (2x + 2) + n > (x + 3) \)[/tex]
3. [tex]\( (x + 3) + n > (2x + 2) \)[/tex]

Let's work through each inequality step-by-step.

### Inequality 1:

[tex]\[ (2x + 2) + (x + 3) > n \][/tex]

Combine the terms:

[tex]\[ 3x + 5 > n \][/tex]

Rewriting this, we get:

[tex]\[ n < 3x + 5 \][/tex]

### Inequality 2:

[tex]\[ (2x + 2) + n > (x + 3) \][/tex]

Combine the terms:

[tex]\[ 2x + 2 + n > x + 3 \][/tex]

Subtract [tex]\( x \)[/tex] from both sides:

[tex]\[ x + 2 + n > 3 \][/tex]

Subtract 2 from both sides:

[tex]\[ x + n > 1 \][/tex]

Rewriting this, we get:

[tex]\[ n > 1 - x \][/tex]

### Inequality 3:

[tex]\[ (x + 3) + n > (2x + 2) \][/tex]

Combine the terms:

[tex]\[ x + 3 + n > 2x + 2 \][/tex]

Subtract [tex]\( x \)[/tex] from both sides:

[tex]\[ 3 + n > x + 2 \][/tex]

Subtract 3 from both sides:

[tex]\[ n > x - 1 \][/tex]

### Combining the inequalities:

We have:
1. [tex]\( n < 3x + 5 \)[/tex]
2. [tex]\( n > x - 1 \)[/tex]

Therefore, the possible values for [tex]\( n \)[/tex] are:

[tex]\[ x - 1 < n < 3x + 5 \][/tex]

Hence, the correct expression representing the possible values of [tex]\( n \)[/tex], in feet, is:

[tex]\[ x - 1 < n < 3x + 5 \][/tex]