The table shows data for the planet Uranus.

\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Quantity } & Value \\
\hline Escape velocity [tex]$( km / s )$[/tex] & 21.3 \\
\hline Gravitational acceleration [tex]$\left( m / s ^2\right)$[/tex] & 8.7 \\
\hline Orbital velocity [tex]$( km / s )$[/tex] & 6.8 \\
\hline Length of day (hours) & 17.2 \\
\hline
\end{tabular}

To the nearest whole number, how much would a 25.0 kg rock weigh on Uranus?

A. 170 N
B. 218 N
C. 430 N
D. 532 N



Answer :

To determine how much a 25.0 kg rock would weigh on Uranus, we need to use the gravitational acceleration provided for Uranus in the given data. Here are the steps:

1. Identify the given quantities:
- Mass of the rock ([tex]\(m\)[/tex]): 25.0 kg
- Gravitational acceleration on Uranus ([tex]\(g\)[/tex]): 8.7 m/s²

2. Use the formula for weight:
The weight ([tex]\(W\)[/tex]) of an object is calculated using the formula:
[tex]\[ W = m \cdot g \][/tex]
where [tex]\(W\)[/tex] is the weight, [tex]\(m\)[/tex] is the mass of the object, and [tex]\(g\)[/tex] is the gravitational acceleration.

3. Substitute the given values into the formula:
[tex]\[ W = 25.0 \, \text{kg} \times 8.7 \, \text{m/s}^2 \][/tex]

4. Perform the multiplication:
[tex]\[ W = 217.5 \, \text{N} \][/tex]

5. Round the result to the nearest whole number:
[tex]\[ W \approx 218 \, \text{N} \][/tex]

Therefore, to the nearest whole number, the 25.0 kg rock would weigh 218 N on Uranus.

So, the correct option is:
- 218 N