The functions [tex]f[/tex] and [tex]g[/tex] are defined as follows:
[tex]
f(x) = -4x + 4 \\
g(x) = -2x^3 - 3
[/tex]

Find [tex]f(3)[/tex] and [tex]g(-4)[/tex]. Simplify your answers as much as possible.

[tex]
f(3) = \\
\boxed{}
[/tex]

[tex]
g(-4) = \\
\boxed{}
[/tex]



Answer :

To find [tex]\( f(3) \)[/tex] and [tex]\( g(-4) \)[/tex] using the given functions [tex]\( f(x) = -4x + 4 \)[/tex] and [tex]\( g(x) = -2x^3 - 3 \)[/tex], follow the steps below for each function.

### Step-by-Step Solution

1. Calculate [tex]\( f(3) \)[/tex]:

The function [tex]\( f(x) = -4x + 4 \)[/tex].

Substitute [tex]\( x = 3 \)[/tex] into the function:

[tex]\[ f(3) = -4(3) + 4 \][/tex]

Simplify the expression inside the parentheses first:

[tex]\[ f(3) = -12 + 4 \][/tex]

Finally, combine the terms:

[tex]\[ f(3) = -8 \][/tex]

So, [tex]\( f(3) = -8 \)[/tex].

2. Calculate [tex]\( g(-4) \)[/tex]:

The function [tex]\( g(x) = -2x^3 - 3 \)[/tex].

Substitute [tex]\( x = -4 \)[/tex] into the function:

[tex]\[ g(-4) = -2(-4)^3 - 3 \][/tex]

Calculate the cube of [tex]\(-4\)[/tex]:

[tex]\[ (-4)^3 = -64 \][/tex]

Substitute [tex]\( -64 \)[/tex] back into the function:

[tex]\[ g(-4) = -2(-64) - 3 \][/tex]

Multiply the constants:

[tex]\[ -2 \cdot -64 = 128 \][/tex]

Finally, combine the terms:

[tex]\[ g(-4) = 128 - 3 \][/tex]

[tex]\[ g(-4) = 125 \][/tex]

So, [tex]\( g(-4) = 125 \)[/tex].

### Final Answers

[tex]\[ f(3) = -8 \][/tex]

[tex]\[ g(-4) = 125 \][/tex]