Answer :

Let's solve the given equation step-by-step:

The equation we need to solve is:
[tex]\[ \sqrt{x} + 6 = x \][/tex]

Step 1: Isolate the square root term.
[tex]\[ \sqrt{x} = x - 6 \][/tex]

Step 2: Square both sides to eliminate the square root.
[tex]\[ (\sqrt{x})^2 = (x - 6)^2 \][/tex]
[tex]\[ x = (x - 6)^2 \][/tex]

Step 3: Expand the right-hand side.
[tex]\[ x = x^2 - 12x + 36 \][/tex]

Step 4: Rearrange the equation to standard quadratic form.
[tex]\[ 0 = x^2 - 12x + 36 - x \][/tex]
[tex]\[ 0 = x^2 - 13x + 36 \][/tex]

Step 5: Solve the quadratic equation [tex]\(x^2 - 13x + 36 = 0\)[/tex]. We can use the quadratic formula, [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = -13\)[/tex], and [tex]\(c = 36\)[/tex].

[tex]\[ x = \frac{13 \pm \sqrt{169 - 144}}{2} \][/tex]
[tex]\[ x = \frac{13 \pm \sqrt{25}}{2} \][/tex]
[tex]\[ x = \frac{13 \pm 5}{2} \][/tex]

Step 6: Find the two possible solutions.
[tex]\[ x = \frac{13 + 5}{2} = 9 \][/tex]
[tex]\[ x = \frac{13 - 5}{2} = 4 \][/tex]

Step 7: Verify the solutions in the original equation to check for validity.

Check [tex]\(x = 9\)[/tex]:
[tex]\[ \sqrt{9} + 6 = 9 \][/tex]
[tex]\[ 3 + 6 = 9 \][/tex]
This is correct.

Check [tex]\(x = 4\)[/tex]:
[tex]\[ \sqrt{4} + 6 = 4 \][/tex]
[tex]\[ 2 + 6 = 8 \][/tex]
This is not correct.

Thus, the only valid solution is [tex]\(x = 9\)[/tex].

Therefore, the correct answer is:
B. 9