Which expression is equivalent to [tex]\left(4 x^3 y^5\right)\left(3 x^5 y\right)^2[/tex]?

A. [tex]24 x^{13} y^7[/tex]

B. [tex]36 x^{13} y^7[/tex]

C. [tex]36 x^{28} y^6[/tex]

D. [tex]144 x^{16} y^{12}[/tex]



Answer :

To solve the problem, we need to simplify the given expression [tex]\(\left(4 x^3 y^5\right)\left(3 x^5 y\right)^2\)[/tex].

### Step-by-Step Solution:

1. Simplify the exponentiation term:
[tex]\[ \left(3 x^5 y\right)^2 \][/tex]

For this step, we need to distribute the exponent of 2 to each factor inside the parentheses:
[tex]\[ \left(3 x^5 y\right)^2 = 3^2 \cdot \left(x^5\right)^2 \cdot y^2 \][/tex]

This simplifies as follows:
[tex]\[ 3^2 = 9 \][/tex]
[tex]\[ \left(x^5\right)^2 = x^{5 \cdot 2} = x^{10} \][/tex]
[tex]\[ y^2 = y^2 \][/tex]

Putting it all together:
[tex]\[ \left(3 x^5 y\right)^2 = 9 x^{10} y^2 \][/tex]

2. Multiply the simplified terms:
Now we need to multiply this result by the other factor in the original expression:
[tex]\[ \left(4 x^3 y^5\right) \left(9 x^{10} y^2\right) \][/tex]

To do this, we multiply the coefficients and add the exponents of like bases:
[tex]\[ \text{Coefficients: } 4 \cdot 9 = 36 \][/tex]
[tex]\[ \text{Exponents of } x: 3 + 10 = 13 \][/tex]
[tex]\[ \text{Exponents of } y: 5 + 2 = 7 \][/tex]

3. Combine the results:
[tex]\[ \left(4 x^3 y^5\right)\left(9 x^{10} y^2\right) = 36 x^{13} y^7 \][/tex]

Therefore, the expression equivalent to [tex]\(\left(4 x^3 y^5\right)\left(3 x^5 y\right)^2\)[/tex] is:

[tex]\[ \boxed{36 x^{13} y^7} \][/tex]