Given that [tex]f(x)=x^2+4[/tex], match the function [tex]g[/tex] with a transformation of [tex]f[/tex].

[tex]
g(x)=(x-2)^2+4
[/tex]

What is the transformation?

A. [tex]g(x)=f(-2 x)[/tex]
B. [tex]g(x)=f(x+2)[/tex]
C. [tex]g(x)=f(x)+2[/tex]
D. [tex]g(x)=f(x)-2[/tex]
E. [tex]g(x)=f(x-2)[/tex]
F. [tex]g(x)=-2 f(x)[/tex]



Answer :

To determine the transformation that turns [tex]\( f(x) = x^2 + 4 \)[/tex] into [tex]\( g(x) = (x-2)^2 + 4 \)[/tex], we need to carefully analyze the transformations involved.

Given:
[tex]\[ f(x) = x^2 + 4 \][/tex]
[tex]\[ g(x) = (x-2)^2 + 4 \][/tex]

We can see that [tex]\( g(x) \)[/tex] is related to [tex]\( f(x) \)[/tex]. Observe the expression inside the quadratic term of [tex]\( g(x) \)[/tex] and compare it with [tex]\( f(x) \)[/tex].

Starting with [tex]\( f(x) = x^2 + 4 \)[/tex], if we replace [tex]\( x \)[/tex] with [tex]\( x - 2 \)[/tex], we get:
[tex]\[ f(x - 2) = (x - 2)^2 + 4 \][/tex]

Therefore, substituting [tex]\( x - 2 \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(x - 2) = (x - 2)^2 + 4 \][/tex]

By comparing this with [tex]\( g(x) = (x-2)^2 + 4 \)[/tex], we see that:
[tex]\[ g(x) = f(x - 2) \][/tex]

Therefore, the transformation from [tex]\( f(x) \)[/tex] to [tex]\( g(x) \)[/tex] is a horizontal shift to the right by 2 units.

So, the correct answer is:
[tex]\[ \boxed{E. \, g(x) = f(x - 2)} \][/tex]