Select the correct answer from each drop-down menu.
Max used these steps to find the inverse of function [tex]\( f \)[/tex].
[tex]\[
\begin{array}{|c|c|l|}
\hline
\text{Step Number} & \text{Function} & \text{Step Description} \\
\hline
\text{Step 1} & f(x) = \frac{5}{6} x - \frac{1}{6} & \text{given} \\
\hline
\text{Step 2} & y = \frac{5}{6} x - \frac{1}{6} & \text{change } f(x) \text{ to } y \\
\hline
\text{Step 3} & x = \frac{5}{6} y - \frac{1}{6} & \text{switch } x \text{ and } y \\
\hline
\text{Step 4} & x + \frac{1}{6} = \frac{5}{6} y & \text{add } \frac{1}{6} \text{ to each side} \\
\hline
\text{Step 5} & \frac{6}{5}(x + \frac{1}{6}) = y & \text{multiply each side by } \frac{6}{5} \\
\hline
\text{Step 6} & \frac{6}{5}(x + \frac{1}{6}) = f^{-1}(x) & \text{replace } y \text{ with } f^{-1}(x) \\
\hline
\end{array}
\][/tex]
Use this information to complete the statement.
Max made a mistake in [tex]\(\square\)[/tex]. He should have [tex]\(\square\)[/tex].