Answer :
Sure, let's solve each problem step-by-step using the rules for multiplication and division:
1. [tex]\(8 \times (-13)\)[/tex]:
- When you multiply a positive number by a negative number, the result is negative.
- [tex]\(8 \times (-13) = -104\)[/tex]
2. [tex]\(8 \div (-16)\)[/tex]:
- When you divide a positive number by a negative number, the result is negative.
- [tex]\(8 \div (-16) = -0.5\)[/tex]
3. [tex]\(32 \div 56\)[/tex]:
- Both numbers are positive.
- [tex]\(32 \div 56\)[/tex]
- Simplifying the fraction [tex]\( \frac{32}{56} \)[/tex] we get [tex]\( \frac{4}{7} \)[/tex] or approximately [tex]\(0.5714285714285714\)[/tex]
4. [tex]\((-32) \times 15\)[/tex]:
- When you multiply a negative number by a positive number, the result is negative.
- [tex]\((-32) \times 15 = -480\)[/tex]
5. [tex]\((-24) \div 560\)[/tex]:
- When you divide a negative number by a positive number, the result is negative.
- [tex]\((-24) \div 560 = -0.04285714285714286\)[/tex]
6. [tex]\((-25) \div 5\)[/tex]:
- When you divide a negative number by a positive number, the result is negative.
- [tex]\((-25) \div 5 = -5.0\)[/tex]
7. [tex]\((-22) \times (-9)\)[/tex]:
- When you multiply two negative numbers, the result is positive.
- [tex]\((-22) \times (-9) = 198\)[/tex]
8. [tex]\((-70) \div (-14)\)[/tex]:
- When you divide two negative numbers, the result is positive.
- [tex]\((-70) \div (-14) = 5.0\)[/tex]
9. [tex]\((-20) \div (-160)\)[/tex]:
- When you divide two negative numbers, the result is positive.
- However, always reduce the fraction to its simplest form.
- [tex]\((-20) \div (-160) = \frac{20}{160} = \frac{1}{8} = 0.125\)[/tex]
10. [tex]\(25 \times 5\)[/tex]:
- When you multiply two positive numbers, the result is positive.
- [tex]\(25 \times 5 = 125\)[/tex]
So the answers are:
1. [tex]\( -104 \)[/tex]
2. [tex]\( -0.5 \)[/tex]
3. [tex]\( 0.5714285714285714 \)[/tex]
4. [tex]\( -480 \)[/tex]
5. [tex]\( -0.04285714285714286 \)[/tex]
6. [tex]\( -5.0 \)[/tex]
7. [tex]\( 198 \)[/tex]
8. [tex]\( 5.0 \)[/tex]
9. [tex]\( 0.125 \)[/tex]
10. [tex]\( 125 \)[/tex]
1. [tex]\(8 \times (-13)\)[/tex]:
- When you multiply a positive number by a negative number, the result is negative.
- [tex]\(8 \times (-13) = -104\)[/tex]
2. [tex]\(8 \div (-16)\)[/tex]:
- When you divide a positive number by a negative number, the result is negative.
- [tex]\(8 \div (-16) = -0.5\)[/tex]
3. [tex]\(32 \div 56\)[/tex]:
- Both numbers are positive.
- [tex]\(32 \div 56\)[/tex]
- Simplifying the fraction [tex]\( \frac{32}{56} \)[/tex] we get [tex]\( \frac{4}{7} \)[/tex] or approximately [tex]\(0.5714285714285714\)[/tex]
4. [tex]\((-32) \times 15\)[/tex]:
- When you multiply a negative number by a positive number, the result is negative.
- [tex]\((-32) \times 15 = -480\)[/tex]
5. [tex]\((-24) \div 560\)[/tex]:
- When you divide a negative number by a positive number, the result is negative.
- [tex]\((-24) \div 560 = -0.04285714285714286\)[/tex]
6. [tex]\((-25) \div 5\)[/tex]:
- When you divide a negative number by a positive number, the result is negative.
- [tex]\((-25) \div 5 = -5.0\)[/tex]
7. [tex]\((-22) \times (-9)\)[/tex]:
- When you multiply two negative numbers, the result is positive.
- [tex]\((-22) \times (-9) = 198\)[/tex]
8. [tex]\((-70) \div (-14)\)[/tex]:
- When you divide two negative numbers, the result is positive.
- [tex]\((-70) \div (-14) = 5.0\)[/tex]
9. [tex]\((-20) \div (-160)\)[/tex]:
- When you divide two negative numbers, the result is positive.
- However, always reduce the fraction to its simplest form.
- [tex]\((-20) \div (-160) = \frac{20}{160} = \frac{1}{8} = 0.125\)[/tex]
10. [tex]\(25 \times 5\)[/tex]:
- When you multiply two positive numbers, the result is positive.
- [tex]\(25 \times 5 = 125\)[/tex]
So the answers are:
1. [tex]\( -104 \)[/tex]
2. [tex]\( -0.5 \)[/tex]
3. [tex]\( 0.5714285714285714 \)[/tex]
4. [tex]\( -480 \)[/tex]
5. [tex]\( -0.04285714285714286 \)[/tex]
6. [tex]\( -5.0 \)[/tex]
7. [tex]\( 198 \)[/tex]
8. [tex]\( 5.0 \)[/tex]
9. [tex]\( 0.125 \)[/tex]
10. [tex]\( 125 \)[/tex]