The general form for the equation of a circle is shown.

[tex]\[ 3x^2 + 3y^2 + 30x - 24y - 12 = 0 \][/tex]

What is the standard form of the equation? Type the correct answer in the box. Use numerals instead of words.

[tex]\[ (x + \square)^2 + (y + \square)^2 = \square \][/tex]



Answer :

To convert the given equation of a circle from its general form to the standard form, we will complete the square for both [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. Here is the step-by-step process:

1. Start with the given equation:
[tex]\[ 3x^2 + 3y^2 + 30x - 24y - 12 = 0 \][/tex]

2. Divide the entire equation by 3 to simplify it:
[tex]\[ x^2 + y^2 + 10x - 8y - 4 = 0 \][/tex]

3. Group the [tex]\(x\)[/tex]-terms and [tex]\(y\)[/tex]-terms:
[tex]\[ (x^2 + 10x) + (y^2 - 8y) = 4 \][/tex]

4. Complete the square for the [tex]\(x\)[/tex]-terms:
[tex]\[ x^2 + 10x \rightarrow (x + 5)^2 - 25 \][/tex]

5. Complete the square for the [tex]\(y\)[/tex]-terms:
[tex]\[ y^2 - 8y \rightarrow (y - 4)^2 - 16 \][/tex]

6. Substitute the completed squares back into the equation:
[tex]\[ (x + 5)^2 - 25 + (y - 4)^2 - 16 = 4 \][/tex]

7. Rearrange the equation to form the standard equation of a circle:
[tex]\[ (x + 5)^2 + (y - 4)^2 = 4 + 25 + 16 \][/tex]
[tex]\[ (x + 5)^2 + (y - 4)^2 = 45 \][/tex]

So, the standard form of the equation is:
[tex]\[ (x + 5)^2 + (y - 4)^2 = 45 \][/tex]

Thus, the standard form of the equation is
[tex]\( (x + \boxed{5})^2 + (y - \boxed{4})^2 = \boxed{45} \)[/tex]