To find the mass [tex]\( m \)[/tex] of the rock, we can use the formula for density:
[tex]\[ d = \frac{m}{v} \][/tex]
where
- [tex]\( d \)[/tex] is the density,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( v \)[/tex] is the volume.
We are given:
- [tex]\( d = 2 \, \text{g/cm}^3 \)[/tex]
- [tex]\( v = 8 \, \text{cm}^3 \)[/tex]
We need to solve for [tex]\( m \)[/tex]. Rearrange the formula to solve for mass [tex]\( m \)[/tex]:
[tex]\[ m = d \times v \][/tex]
Substitute the given values into the formula:
[tex]\[ m = 2 \, \text{g/cm}^3 \times 8 \, \text{cm}^3 \][/tex]
[tex]\[ m = 16 \, \text{g} \][/tex]
Therefore, the mass of the rock is [tex]\( 16 \, \text{g} \)[/tex].
The correct answer is:
D. 16 g