Use the equation [tex]d=\frac{m}{v}[/tex], where [tex]d[/tex] = density, [tex]m[/tex] = mass, and [tex]v[/tex] = volume.

If a rock has a density of [tex]2 \, \text{g/cm}^3[/tex] and a volume of [tex]8 \, \text{cm}^3[/tex], what is its mass?

A. 4 g
B. 128 g
C. 0.25 g
D. 16 g



Answer :

To find the mass [tex]\( m \)[/tex] of the rock, we can use the formula for density:

[tex]\[ d = \frac{m}{v} \][/tex]

where
- [tex]\( d \)[/tex] is the density,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( v \)[/tex] is the volume.

We are given:
- [tex]\( d = 2 \, \text{g/cm}^3 \)[/tex]
- [tex]\( v = 8 \, \text{cm}^3 \)[/tex]

We need to solve for [tex]\( m \)[/tex]. Rearrange the formula to solve for mass [tex]\( m \)[/tex]:

[tex]\[ m = d \times v \][/tex]

Substitute the given values into the formula:

[tex]\[ m = 2 \, \text{g/cm}^3 \times 8 \, \text{cm}^3 \][/tex]

[tex]\[ m = 16 \, \text{g} \][/tex]

Therefore, the mass of the rock is [tex]\( 16 \, \text{g} \)[/tex].

The correct answer is:
D. 16 g