Which is a correct first step in solving the inequality [tex]-4(2x - 1) \ \textgreater \ 5 - 3x[/tex]?

A. Distribute -4 to get [tex]-8x + 4 \ \textgreater \ 5 - 3x[/tex].
B. Distribute -4 to get [tex]-8x - 1 \ \textgreater \ 5 - 3x[/tex].
C. Subtract [tex]2x[/tex] from both sides of the inequality.
D. Add 1 to both sides of the inequality.



Answer :

To solve the inequality [tex]\( -4(2x - 1) > 5 - 3x \)[/tex], the first step is to distribute the [tex]\(-4\)[/tex] over the terms inside the parenthesis on the left side of the inequality.

Let's break it down:

1. Distribute -4 to the terms inside the parentheses:
[tex]\[ -4(2x - 1) = -4 \cdot 2x + (-4) \cdot (-1) \][/tex]
When we distribute [tex]\(-4\)[/tex]:
[tex]\[ -4 \cdot 2x = -8x \quad \text{and} \quad -4 \cdot (-1) = 4 \][/tex]

2. Therefore, the left side of the inequality becomes:
[tex]\[ -8x + 4 \][/tex]

Thus, our inequality transforms to:
[tex]\[ -8x + 4 > 5 - 3x \][/tex]

Accordingly, the correct first step in solving the inequality [tex]\( -4(2x - 1) > 5 - 3x \)[/tex] is to distribute [tex]\(-4\)[/tex] to get:
[tex]\[ -8x + 4 > 5 - 3x \][/tex]

So, the correct answer is:
Distribute [tex]\(-4\)[/tex] to get [tex]\( -8x + 4 > 5 - 3x \)[/tex].