Answer :
To determine which table of ordered pairs represents a proportional relationship, let's review the concept of proportionality. A relationship between two quantities [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is proportional if there is a constant ratio (k) such that [tex]\( \frac{y}{x} = k \)[/tex] for all pairs [tex]\((x, y)\)[/tex]. In mathematical terms, we'll check if [tex]\( \frac{y}{x} \)[/tex] is the same for all values in each table.
Let's go through each table one by one:
### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 4 & 8 \\ \hline 7 & 11 \\ \hline 10 & 14 \\ \hline \end{array} \][/tex]
Calculate the ratios:
[tex]\[ \frac{8}{4} = 2, \quad \frac{11}{7} \approx 1.57, \quad \frac{14}{10} = 1.4 \][/tex]
The ratios are not the same, so Table 1 does not represent a proportional relationship.
### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 5 & 25 \\ \hline 7 & 49 \\ \hline 9 & 81 \\ \hline \end{array} \][/tex]
Calculate the ratios:
[tex]\[ \frac{25}{5} = 5, \quad \frac{49}{7} = 7, \quad \frac{81}{9} = 9 \][/tex]
The ratios are not the same, so Table 2 does not represent a proportional relationship either.
### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 6 & 3 \\ \hline 10 & 5 \\ \hline 14 & 7 \\ \hline \end{array} \][/tex]
Calculate the ratios:
[tex]\[ \frac{3}{6} = 0.5, \quad \frac{5}{10} = 0.5, \quad \frac{7}{14} = 0.5 \][/tex]
The ratios are the same, so Table 3 does represent a proportional relationship.
### Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 3 & 6 \\ \hline 8 & 11 \\ \hline 13 & 18 \\ \hline \end{array} \][/tex]
Calculate the ratios:
[tex]\[ \frac{6}{3} = 2, \quad \frac{11}{8} \approx 1.375, \quad \frac{18}{13} \approx 1.385 \][/tex]
The ratios are not the same, so Table 4 does not represent a proportional relationship either.
After checking all the tables, we find that Table 3 represents a proportional relationship.
Let's go through each table one by one:
### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 4 & 8 \\ \hline 7 & 11 \\ \hline 10 & 14 \\ \hline \end{array} \][/tex]
Calculate the ratios:
[tex]\[ \frac{8}{4} = 2, \quad \frac{11}{7} \approx 1.57, \quad \frac{14}{10} = 1.4 \][/tex]
The ratios are not the same, so Table 1 does not represent a proportional relationship.
### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 5 & 25 \\ \hline 7 & 49 \\ \hline 9 & 81 \\ \hline \end{array} \][/tex]
Calculate the ratios:
[tex]\[ \frac{25}{5} = 5, \quad \frac{49}{7} = 7, \quad \frac{81}{9} = 9 \][/tex]
The ratios are not the same, so Table 2 does not represent a proportional relationship either.
### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 6 & 3 \\ \hline 10 & 5 \\ \hline 14 & 7 \\ \hline \end{array} \][/tex]
Calculate the ratios:
[tex]\[ \frac{3}{6} = 0.5, \quad \frac{5}{10} = 0.5, \quad \frac{7}{14} = 0.5 \][/tex]
The ratios are the same, so Table 3 does represent a proportional relationship.
### Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 3 & 6 \\ \hline 8 & 11 \\ \hline 13 & 18 \\ \hline \end{array} \][/tex]
Calculate the ratios:
[tex]\[ \frac{6}{3} = 2, \quad \frac{11}{8} \approx 1.375, \quad \frac{18}{13} \approx 1.385 \][/tex]
The ratios are not the same, so Table 4 does not represent a proportional relationship either.
After checking all the tables, we find that Table 3 represents a proportional relationship.