Answer the following prompts with numerical answers only. If necessary, round answers to the nearest tenth of a unit.

The diameter of circle [tex]$P$[/tex] has endpoints [tex]$A(-1, 5)$[/tex] and [tex]$B(4, -3)$[/tex].

1. Use the midpoint formula to find the coordinates of the center of the circle, [tex]$P(x, y)$[/tex].
[tex]\[ P\left( \square , \square \right) \][/tex]

2. Use the distance formula to find the length of the radius of circle [tex]$P$[/tex]. The length of the radius of circle [tex]$P$[/tex] is [tex]\[ \square \][/tex] units.

3. Using 3.14 to approximate [tex]\(\pi\)[/tex], the circumference of circle [tex]$P$[/tex] is approximately [tex]\[ \square \][/tex] units.

4. Using 3.14 to approximate [tex]\(\pi\)[/tex], the area of circle [tex]$P$[/tex] is approximately [tex]\[ \square \][/tex] square units.



Answer :

1. Use the midpoint formula to find the coordinates of the center of the circle, [tex]\( P(x, y) \)[/tex].
[tex]\[ P( \ 1.5 \ , \ 1.0 \ ) \][/tex]

2. Use the distance formula to find the length of the radius of circle [tex]\( P \)[/tex]. The length of the radius of circle [tex]\( P \)[/tex] is 4.7 units.

3. Using 3.14 to approximate [tex]\(\pi\)[/tex], the circumference of circle [tex]\( P \)[/tex]. The circumference of circle [tex]\( P \)[/tex] is approximately 29.6 units.

4. Using 3.14 to approximate [tex]\(\pi\)[/tex], the area of circle [tex]\( P \)[/tex] is approximately 69.9 square units.