Let's solve the formula [tex]\( P = C + M C \)[/tex] for [tex]\( C \)[/tex] step-by-step.
Starting with the given equation:
[tex]\[ P = C + M C \][/tex]
First, factor out [tex]\( C \)[/tex] from the right side of the equation:
[tex]\[ P = C(1 + M) \][/tex]
Next, to isolate [tex]\( C \)[/tex], divide both sides of the equation by [tex]\( (1 + M) \)[/tex]:
[tex]\[ C = \frac{P}{1 + M} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{C = \frac{P}{1+M}} \][/tex]
So, the option that best answers the question is:
[tex]\[ \text{b}. \quad C = \frac{P}{1+M} \][/tex]