Answered

Select the correct answer.

Which expression is equivalent to this polynomial expression?
[tex]\[
(2x^2 - 3y^2)(4x^4 + 6x^2y^2 + 9y^4)
\][/tex]

A. [tex]\(8x^6 - 27y^6\)[/tex]
B. [tex]\(8x^6 + 12x^4y^2 + 18x^2y^4\)[/tex]
C. [tex]\(6x^8 + 9x^4y^2 + 14x^2y^4 + 6y^8\)[/tex]
D. [tex]\(8x^6 + 24x^4y^2 + 36x^2y^4 - 27y^6\)[/tex]



Answer :

To determine which expression is equivalent to the given polynomial expression [tex]\((2x^2 - 3y^2)(4x^4 + 6x^2y^2 + 9y^4)\)[/tex], we can expand the product step by step.

Consider the terms in the first polynomial: [tex]\(2x^2\)[/tex] and [tex]\(-3y^2\)[/tex].
We need to multiply each term in the first polynomial by each term in the second polynomial [tex]\((4x^4 + 6x^2y^2 + 9y^4)\)[/tex].

1. Multiply [tex]\(2x^2\)[/tex] by each term:
[tex]\[ 2x^2 \cdot 4x^4 = 8x^6 \][/tex]
[tex]\[ 2x^2 \cdot 6x^2y^2 = 12x^4y^2 \][/tex]
[tex]\[ 2x^2 \cdot 9y^4 = 18x^2y^4 \][/tex]

2. Multiply [tex]\(-3y^2\)[/tex] by each term:
[tex]\[ -3y^2 \cdot 4x^4 = -12x^4y^2 \][/tex]
[tex]\[ -3y^2 \cdot 6x^2y^2 = -18x^2y^4 \][/tex]
[tex]\[ -3y^2 \cdot 9y^4 = -27y^6 \][/tex]

Now, add all the terms together:
[tex]\[ 8x^6 + 12x^4y^2 + 18x^2y^4 - 12x^4y^2 - 18x^2y^4 - 27y^6 \][/tex]

Combine like terms:
[tex]\[ 8x^6 + (12x^4y^2 - 12x^4y^2) + (18x^2y^4 - 18x^2y^4) - 27y^6 \][/tex]

Simplify:
[tex]\[ 8x^6 - 27y^6 \][/tex]

Thus, the expression equivalent to [tex]\((2x^2 - 3y^2)(4x^4 + 6x^2y^2 + 9y^4)\)[/tex] is:
[tex]\[ 8x^6 - 27y^6 \][/tex]

Therefore, the correct answer is:
A. [tex]\(8x^6 - 27y^6\)[/tex]