Which expression is equivalent to [tex]\left(256 x^{16}\right)^{\frac{1}{4}}[/tex]?

A. [tex]4 x^2[/tex]

B. [tex]4 x^4[/tex]

C. [tex]64 x^2[/tex]

D. [tex]64 x^4[/tex]



Answer :

To find the expression equivalent to [tex]\(\left(256 x^{16}\right)^{\frac{1}{4}}\)[/tex], we need to handle the simplification step-by-step.

1. Start by rewriting the expression:
[tex]\[ \left(256 x^{16}\right)^{\frac{1}{4}} \][/tex]

2. Apply the exponent [tex]\(\frac{1}{4}\)[/tex] to both the numerical part [tex]\(256\)[/tex] and the variable part [tex]\(x^{16}\)[/tex]:
[tex]\[ (256)^{\frac{1}{4}} \cdot \left(x^{16}\right)^{\frac{1}{4}} \][/tex]

3. Simplify [tex]\(256^{\frac{1}{4}}\)[/tex]:
[tex]\[ 256 = 4^4 \][/tex]
So,
[tex]\[ (256)^{\frac{1}{4}} = (4^4)^{\frac{1}{4}} = 4 \][/tex]

4. Simplify [tex]\(\left(x^{16}\right)^{\frac{1}{4}}\)[/tex]:
[tex]\[ \left(x^{16}\right)^{\frac{1}{4}} = x^{16 \cdot \frac{1}{4}} = x^4 \][/tex]

5. Combine the simplified parts:
[tex]\[ 4 \cdot x^4 = 4x^4 \][/tex]

Therefore, the expression [tex]\(\left(256 x^{16}\right)^{\frac{1}{4}}\)[/tex] simplifies to [tex]\(\boxed{4x^4}\)[/tex].