A clothing store sells a customer 5 T-shirts and 3 pairs of shorts for [tex]\$66[/tex]. Another customer buys 15 T-shirts and 2 pairs of shorts for [tex]\$114[/tex]. How much is one T-shirt [tex](t)[/tex] and one pair of shorts [tex](s)[/tex]?

A. [tex]t = \[tex]$6, s = \$[/tex]12[/tex]
B. [tex]t = \[tex]$15, s = \$[/tex]2[/tex]
C. [tex]t = \[tex]$5, s = \$[/tex]3[/tex]
D. [tex]t = \[tex]$12, s = \$[/tex]6[/tex]



Answer :

To determine the cost of one T-shirt [tex]\(t\)[/tex] and one pair of shorts [tex]\(s\)[/tex], we will set up and solve a system of linear equations based on the given information.

Let's denote:
- [tex]\(t\)[/tex] as the cost of one T-shirt.
- [tex]\(s\)[/tex] as the cost of one pair of shorts.

We have two customers and the following information:
1. The first customer buys 5 T-shirts and 3 pairs of shorts for a total of \[tex]$66. 2. The second customer buys 15 T-shirts and 2 pairs of shorts for a total of \$[/tex]114.

We can translate this information into two equations:
[tex]\[ 5t + 3s = 66 \tag{1} \][/tex]
[tex]\[ 15t + 2s = 114 \tag{2} \][/tex]

We will solve this system of equations step-by-step.

### Step 1: Solve one equation for one variable in terms of the other
First, we solve equation (1) for [tex]\(s\)[/tex]:
[tex]\[ 5t + 3s = 66 \][/tex]
Isolate [tex]\(s\)[/tex] by subtracting [tex]\(5t\)[/tex] from both sides:
[tex]\[ 3s = 66 - 5t \][/tex]
Divide by 3:
[tex]\[ s = 22 - \frac{5}{3}t \tag{3} \][/tex]

### Step 2: Substitute the expression from equation (3) into equation (2)
Substitute [tex]\(s = 22 - \frac{5}{3}t\)[/tex] into the second equation [tex]\(15t + 2s = 114\)[/tex]:
[tex]\[ 15t + 2\left(22 - \frac{5}{3}t\right) = 114 \][/tex]
Distribute 2 in the equation:
[tex]\[ 15t + 44 - \frac{10}{3}t = 114 \][/tex]
To combine like terms, convert [tex]\(15t\)[/tex] to a common denominator of 3:
[tex]\[ \frac{45}{3}t + 44 - \frac{10}{3}t = 114 \][/tex]
Combine the [tex]\(t\)[/tex] terms:
[tex]\[ \frac{35}{3}t + 44 = 114 \][/tex]
Subtract 44 from both sides:
[tex]\[ \frac{35}{3}t = 70 \][/tex]
Multiply both sides by 3 to clear the fraction:
[tex]\[ 35t = 210 \][/tex]
Divide by 35:
[tex]\[ t = 6 \][/tex]

### Step 3: Substitute [tex]\(t = 6\)[/tex] back into equation (3) to find [tex]\(s\)[/tex]
Using [tex]\(t = 6\)[/tex] in equation (3):
[tex]\[ s = 22 - \frac{5}{3}(6) \][/tex]
Calculate:
[tex]\[ s = 22 - 10 \][/tex]
[tex]\[ s = 12 \][/tex]

Therefore, the cost of one T-shirt ([tex]\(t\)[/tex]) is \[tex]$6, and the cost of one pair of shorts (\(s\)) is \$[/tex]12.

So, the correct answer is:
A. [tex]\(t = \$6, s = \$12\)[/tex]