Isolate [tex]$q$[/tex] for the literal equation [tex]$M = q + 3p$[/tex].

A. [tex]$q = \frac{M}{3p}$[/tex]
B. [tex][tex]$q = 3Mp$[/tex][/tex]
C. [tex]$q = M - 3p$[/tex]
D. [tex]$q = M + 3p$[/tex]



Answer :

To isolate the variable [tex]\( q \)[/tex] in the equation [tex]\( M = q + 3p \)[/tex], follow these steps:

1. Start with the original equation:
[tex]\[ M = q + 3p \][/tex]

2. To isolate [tex]\( q \)[/tex], we need to get [tex]\( q \)[/tex] by itself on one side of the equation. To do this, subtract [tex]\( 3p \)[/tex] from both sides of the equation. This helps us move the term [tex]\( 3p \)[/tex] to the left side:
[tex]\[ M - 3p = q \][/tex]

3. This simplifies to:
[tex]\[ q = M - 3p \][/tex]

Now, let's compare this with the choices provided:

a. [tex]\( q = \frac{M}{3p} \)[/tex]

b. [tex]\( q = 3Mp \)[/tex]

c. [tex]\( q = M - 3p \)[/tex]

d. [tex]\( q = M + 3p \)[/tex]

The correct answer is choice [tex]\( c \)[/tex]:
[tex]\[ q = M - 3p \][/tex]