Answered

Drag each tile to the correct box. Not all tiles will be used.

Consider the expression below:
[tex]\[
\frac{3x + 6}{x^2 - x - 6} + \frac{2x}{x^2 + x - 12}
\][/tex]

Place the steps required to determine the sum of the two expressions in the correct order:

1. [tex]\[\frac{3(x + 2)}{(x + 2)(x - 3)} + \frac{2x}{(x - 3)(x + 4)} \][/tex]
2. [tex]\[\frac{3}{(x - 3)} + \frac{2x}{(x - 3)(x + 4)} \][/tex]
3. [tex]\[\frac{3(x + 4)}{(x - 3)(x + 4)} + \frac{2x}{(x - 3)(x + 4)} \][/tex]
4. [tex]\[\frac{5x + 12}{(x - 3)(x + 4)}\][/tex]
5. [tex]\[\frac{5x + 6}{x^2 - x + 12}\][/tex]

[tex]\(\downarrow\)[/tex]

[tex]\(\square\)[/tex]



Answer :

Certainly! Let's go through the steps required to determine the sum of the two expressions in the correct order and place the tiles accordingly:

### Step-by-Step Solution:

1. Factorize the expressions in the denominators and numerators where possible:

Given expression:
[tex]\[ \frac{3x + 6}{x^2 - x - 6} + \frac{2x}{x^2 + x - 12} \][/tex]

Factorize the denominators and the numerator of the first term:
[tex]\[ x^2 - x - 6 = (x - 3)(x + 2) \][/tex]
[tex]\[ x^2 + x - 12 = (x - 3)(x + 4) \][/tex]
[tex]\[ 3x + 6 = 3(x + 2) \][/tex]

Transformed expression:
[tex]\[ \frac{3(x + 2)}{(x - 3)(x + 2)} + \frac{2x}{(x - 3)(x + 4)} \][/tex]

2. Simplify the first term:

Cancel out the common factors in the numerator and denominator of the first term:
[tex]\[ \frac{3(x + 2)}{(x - 3)(x + 2)} = \frac{3}{(x - 3)} \][/tex]

Simplified expression:
[tex]\[ \frac{3}{(x - 3)} + \frac{2x}{(x - 3)(x + 4)} \][/tex]

3. Find a common denominator for combining the fractions:

Combine the fractions using the common denominator [tex]\((x - 3)(x + 4)\)[/tex]:
[tex]\[ \frac{3}{(x - 3)} = \frac{3(x + 4)}{(x - 3)(x + 4)} \][/tex]

Expression with a common denominator:
[tex]\[ \frac{3(x + 4)}{(x - 3)(x + 4)} + \frac{2x}{(x - 3)(x + 4)} \][/tex]

4. Combine the numerators:

Combine the numerators over the common denominator:
[tex]\[ \frac{3(x + 4) + 2x}{(x - 3)(x + 4)} = \frac{3x + 12 + 2x}{(x - 3)(x + 4)} \][/tex]

Simplify the numerator:
[tex]\[ \frac{5x + 12}{(x - 3)(x + 4)} \][/tex]

So, the collection of steps in order would be:

1. [tex]\(\square\)[/tex]
2. [tex]\(\frac{5x + 12}{(x - 3)(x + 4)}\)[/tex]
3. [tex]$\downarrow$[/tex]
4. [tex]\(\frac{3(x+2)}{(x+2)(x-3)}+\frac{2x}{(x-3)(x+4)}\)[/tex]
5. [tex]$\downarrow$[/tex]
6. [tex]\(\frac{3}{(x-3)}+\frac{2x}{(x-3)(x+4)}\)[/tex]
7. [tex]$\downarrow$[/tex]
8. [tex]\(\frac{3(x+4)}{(x-3)(x+4)}+\frac{2x}{(x-3)(x+4)}\)[/tex]

Note: The tile "[tex]\(\frac{5 x+6}{x^2-x+12}\)[/tex]" is not used because it does not align with the correct factorization and simplification steps we need.