What is the product of these two binomials?

[tex]\[
\left(x^2 - 5\right)(2x - 1)
\][/tex]

Select the correct answer.

A. [tex]\(2x^3 - x^2 + 10x - 5\)[/tex]
B. [tex]\(2x^3 - x^2 - 10x - 5\)[/tex]
C. [tex]\(2x^3 - x^2 - 10x + 5\)[/tex]
D. [tex]\(2x^3 - x^2 + 10x + 5\)[/tex]



Answer :

To find the product of the binomials [tex]\((x^2 - 5)(2x - 1)\)[/tex], we use the distributive property (also known as the FOIL method for binomials). Here's the step-by-step solution:

1. First, distribute each term in the first binomial [tex]\( (x^2 - 5) \)[/tex] to each term in the second binomial [tex]\( (2x - 1) \)[/tex].

2. Multiply [tex]\( x^2 \)[/tex] by each term in [tex]\( 2x - 1 \)[/tex]:
[tex]\[ x^2 \cdot 2x = 2x^3 \][/tex]
[tex]\[ x^2 \cdot (-1) = -x^2 \][/tex]

3. Next, multiply [tex]\(-5\)[/tex] by each term in [tex]\( 2x - 1 \)[/tex]:
[tex]\[ -5 \cdot 2x = -10x \][/tex]
[tex]\[ -5 \cdot (-1) = 5 \][/tex]

4. Now, add all these results together:
[tex]\[ 2x^3 - x^2 - 10x + 5 \][/tex]

So, the product of the binomials [tex]\((x^2 - 5)(2x - 1)\)[/tex] simplifies to:
[tex]\[ 2x^3 - x^2 - 10x + 5 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{2 x^3 - x^2 - 10 x + 5} \][/tex]