Answer :
Let's start by proving that the equation [tex]\( A \sin(\omega t + \phi) = c_2 \sin \omega t + c_1 \cos \omega t \)[/tex].
First, recall the trigonometric identity for the sine of a sum of angles:
[tex]\[ \sin(\omega t + \phi) = \sin \omega t \cos \phi + \cos \omega t \sin \phi \][/tex]
Now, let's multiply both sides of this identity by the amplitude [tex]\( A \)[/tex]:
[tex]\[ A \sin(\omega t + \phi) = A (\sin \omega t \cos \phi + \cos \omega t \sin \phi) \][/tex]
[tex]\[ = A \cos \phi \sin \omega t + A \sin \phi \cos \omega t \][/tex]
We can identify the terms [tex]\( A \cos \phi \)[/tex] and [tex]\( A \sin \phi \)[/tex]. Let's define these as follows:
[tex]\[ c_2 = A \cos \phi \][/tex]
[tex]\[ c_1 = A \sin \phi \][/tex]
Substituting these values back into the equation, we get:
[tex]\[ A \sin(\omega t + \phi) = c_2 \sin \omega t + c_1 \cos \omega t \][/tex]
Thus, we have shown that:
[tex]\[ A \sin(\omega t + \phi) = c_2 \sin \omega t + c_1 \cos \omega t \][/tex]
Now, let's use this form to find the amplitude [tex]\( A \)[/tex], angular frequency [tex]\( \omega \)[/tex], and phase [tex]\( \phi \)[/tex] for the given equation [tex]\( y(t) = 2 \sin(4 \pi t) + 5 \cos(4 \pi t) \)[/tex].
Given:
[tex]\[ c_2 = 2 \][/tex]
[tex]\[ c_1 = 5 \][/tex]
### 1. Amplitude ([tex]\( A \)[/tex])
The amplitude [tex]\( A \)[/tex] is given by:
[tex]\[ A = \sqrt{c_1^2 + c_2^2} \][/tex]
Substitute the given values [tex]\( c_1 = 5 \)[/tex] and [tex]\( c_2 = 2 \)[/tex]:
[tex]\[ A = \sqrt{5^2 + 2^2} \][/tex]
[tex]\[ A = \sqrt{25 + 4} \][/tex]
[tex]\[ A = \sqrt{29} \][/tex]
[tex]\[ A \approx 5.385 \][/tex]
### 2. Angular Frequency ([tex]\( \omega \)[/tex])
The given equation has [tex]\( \omega t = 4 \pi t \)[/tex], so:
[tex]\[ \omega = 4 \pi \][/tex]
[tex]\[ \omega \approx 12.566 \][/tex]
### 3. Phase ([tex]\( \phi \)[/tex])
The phase [tex]\( \phi \)[/tex] can be found using the relationship:
[tex]\[ \phi = \arctan \left( \frac{c_1}{c_2} \right) \][/tex]
Substitute the given values [tex]\( c_1 = 5 \)[/tex] and [tex]\( c_2 = 2 \)[/tex]:
[tex]\[ \phi = \arctan \left( \frac{5}{2} \right) \][/tex]
[tex]\[ \phi \approx 1.190 \][/tex]
Therefore, the original equation [tex]\( y(t) = 2 \sin(4 \pi t) + 5 \cos(4 \pi t) \)[/tex] can be rewritten in the form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex] as:
[tex]\[ y(t) \approx 5.385 \sin(12.566 t + 1.190) \][/tex]
We successfully identified the amplitude, angular frequency, and phase as:
- Amplitude [tex]\( A \approx 5.385 \)[/tex]
- Angular frequency [tex]\( \omega \approx 12.566 \)[/tex]
- Phase [tex]\( \phi \approx 1.190 \)[/tex]
First, recall the trigonometric identity for the sine of a sum of angles:
[tex]\[ \sin(\omega t + \phi) = \sin \omega t \cos \phi + \cos \omega t \sin \phi \][/tex]
Now, let's multiply both sides of this identity by the amplitude [tex]\( A \)[/tex]:
[tex]\[ A \sin(\omega t + \phi) = A (\sin \omega t \cos \phi + \cos \omega t \sin \phi) \][/tex]
[tex]\[ = A \cos \phi \sin \omega t + A \sin \phi \cos \omega t \][/tex]
We can identify the terms [tex]\( A \cos \phi \)[/tex] and [tex]\( A \sin \phi \)[/tex]. Let's define these as follows:
[tex]\[ c_2 = A \cos \phi \][/tex]
[tex]\[ c_1 = A \sin \phi \][/tex]
Substituting these values back into the equation, we get:
[tex]\[ A \sin(\omega t + \phi) = c_2 \sin \omega t + c_1 \cos \omega t \][/tex]
Thus, we have shown that:
[tex]\[ A \sin(\omega t + \phi) = c_2 \sin \omega t + c_1 \cos \omega t \][/tex]
Now, let's use this form to find the amplitude [tex]\( A \)[/tex], angular frequency [tex]\( \omega \)[/tex], and phase [tex]\( \phi \)[/tex] for the given equation [tex]\( y(t) = 2 \sin(4 \pi t) + 5 \cos(4 \pi t) \)[/tex].
Given:
[tex]\[ c_2 = 2 \][/tex]
[tex]\[ c_1 = 5 \][/tex]
### 1. Amplitude ([tex]\( A \)[/tex])
The amplitude [tex]\( A \)[/tex] is given by:
[tex]\[ A = \sqrt{c_1^2 + c_2^2} \][/tex]
Substitute the given values [tex]\( c_1 = 5 \)[/tex] and [tex]\( c_2 = 2 \)[/tex]:
[tex]\[ A = \sqrt{5^2 + 2^2} \][/tex]
[tex]\[ A = \sqrt{25 + 4} \][/tex]
[tex]\[ A = \sqrt{29} \][/tex]
[tex]\[ A \approx 5.385 \][/tex]
### 2. Angular Frequency ([tex]\( \omega \)[/tex])
The given equation has [tex]\( \omega t = 4 \pi t \)[/tex], so:
[tex]\[ \omega = 4 \pi \][/tex]
[tex]\[ \omega \approx 12.566 \][/tex]
### 3. Phase ([tex]\( \phi \)[/tex])
The phase [tex]\( \phi \)[/tex] can be found using the relationship:
[tex]\[ \phi = \arctan \left( \frac{c_1}{c_2} \right) \][/tex]
Substitute the given values [tex]\( c_1 = 5 \)[/tex] and [tex]\( c_2 = 2 \)[/tex]:
[tex]\[ \phi = \arctan \left( \frac{5}{2} \right) \][/tex]
[tex]\[ \phi \approx 1.190 \][/tex]
Therefore, the original equation [tex]\( y(t) = 2 \sin(4 \pi t) + 5 \cos(4 \pi t) \)[/tex] can be rewritten in the form [tex]\( y(t) = A \sin(\omega t + \phi) \)[/tex] as:
[tex]\[ y(t) \approx 5.385 \sin(12.566 t + 1.190) \][/tex]
We successfully identified the amplitude, angular frequency, and phase as:
- Amplitude [tex]\( A \approx 5.385 \)[/tex]
- Angular frequency [tex]\( \omega \approx 12.566 \)[/tex]
- Phase [tex]\( \phi \approx 1.190 \)[/tex]