Select the correct answer.

The zeros of function [tex]\( f \)[/tex] are -1 and -5. Which equation could represent function [tex]\( f \)[/tex]?

A. [tex]\( f(x) = (x - 1)(x + 5) \)[/tex]
B. [tex]\( f(x) = (x + 1)(x - 5) \)[/tex]
C. [tex]\( f(x) = (x + 1)(x + 5) \)[/tex]
D. [tex]\( f(x) = (x - 1)(x - 5) \)[/tex]



Answer :

To determine which equation could represent the function [tex]\( f \)[/tex] with zeros at [tex]\( -1 \)[/tex] and [tex]\( -5 \)[/tex], we need to understand that the zeros of a function are the values of [tex]\( x \)[/tex] that make the function equal to zero.

Given the zeros [tex]\( -1 \)[/tex] and [tex]\( -5 \)[/tex]:

1. The zero [tex]\( x = -1 \)[/tex] implies that one of the factors of the function is [tex]\( (x + 1) \)[/tex].
2. The zero [tex]\( x = -5 \)[/tex] implies that the other factor of the function is [tex]\( (x + 5) \)[/tex].

Thus, the function [tex]\( f(x) \)[/tex] can be written as the product of these factors:

[tex]\[ f(x) = (x + 1)(x + 5) \][/tex]

Let's confirm this form matches our given options:

1. [tex]\( f(x) = (x - 1)(x + 5) \)[/tex]
2. [tex]\( f(x) = (x + 1)(x - 5) \)[/tex]
3. [tex]\( f(x) = (x + 1)(x + 5) \)[/tex]
4. [tex]\( f(x) = (x - 1)(x - 5) \)[/tex]

Among these, the equation [tex]\( f(x) = (x + 1)(x + 5) \)[/tex] matches our required factors. Hence, the correct answer is:

[tex]\[ f(x) = (x + 1)(x + 5) \][/tex]