\begin{tabular}{|l|l|l|}
\hline
& 7 & \\
\hline
& & \\
\hline
\end{tabular}

a) Given the vectors [tex]p =\binom{m+3}{2-n}[/tex] and [tex]q =\binom{3m-1}{n-8}[/tex] and [tex]p = q[/tex], find the values of [tex]m[/tex] and [tex]n[/tex].



Answer :

To find the values of [tex]\( m \)[/tex] and [tex]\( n \)[/tex] given the vectors [tex]\( p \)[/tex] and [tex]\( q \)[/tex], let's work with the condition [tex]\( p = q \)[/tex].

The vectors are defined as:
[tex]\[ p = \begin{pmatrix} m + 3 \\ 2 - n \end{pmatrix} \][/tex]
[tex]\[ q = \begin{pmatrix} 3m - 1 \\ n - 8 \end{pmatrix} \][/tex]

Since [tex]\( p = q \)[/tex], the corresponding components of the two vectors must be equal. This gives us two equations:
[tex]\[ m + 3 = 3m - 1 \][/tex]
[tex]\[ 2 - n = n - 8 \][/tex]

### Step-by-Step Solution:

1. Solving the first equation:
[tex]\[ m + 3 = 3m - 1 \][/tex]

Subtract [tex]\( m \)[/tex] from both sides to isolate the terms involving [tex]\( m \)[/tex] on one side:
[tex]\[ 3 = 2m - 1 \][/tex]

Add 1 to both sides:
[tex]\[ 4 = 2m \][/tex]

Divide both sides by 2:
[tex]\[ m = 2 \][/tex]

2. Solving the second equation:
[tex]\[ 2 - n = n - 8 \][/tex]

Add [tex]\( n \)[/tex] to both sides to combine [tex]\( n \)[/tex] on one side:
[tex]\[ 2 = 2n - 8 \][/tex]

Add 8 to both sides:
[tex]\[ 10 = 2n \][/tex]

Divide both sides by 2:
[tex]\[ n = 5 \][/tex]

### Conclusion:
The values of [tex]\( m \)[/tex] and [tex]\( n \)[/tex] that satisfy the given condition [tex]\( p = q \)[/tex] are:
[tex]\[ m = 2 \][/tex]
[tex]\[ n = 5 \][/tex]